Control of Crystallinity of Hydroxyapatite Sheet


Article Preview

A technique to control the crystallinity of hydroxyapatite (HA) was investigated for applications such as dentistry, regenerative medicine, cell culture scaffolding, and bio-sensors. An amorphous HA film was first produced by pulsed laser deposition. After deposition, it was separated from a substrate as a free-standing sheet. Annealing was then performed to control the crystallinity of the sheet. It was found that conventional annealing in an electric oven was not suitable for HA sheets, because it led to curling and cracking. Since such problems were assumed to be caused by thermal stress, annealing was next carried out with the HA sheet enclosed in HA powder in the center of a metal capsule. This method allowed annealing to be successfully carried out without causing any curling or cracking. Uniform pieces with dimensions of 10 mm × 10 mm cut from a large HA sheet were annealed at temperatures of 200 to 800 ºC and then examined using X-ray diffraction. It was found that the intensity of the diffraction peaks associated with crystalline HA changed with annealing temperature, and that the strongest peaks were observed for the sample annealed at 500 ºC. These results indicate that the crystallinity of the HA sheet can be controlled using the proposed method.



Main Theme:

Edited by:

Iulian Antoniac, Cosmin Mihai Cotrut and Aurora Antoniac




M. Kusunoki et al., "Control of Crystallinity of Hydroxyapatite Sheet", Key Engineering Materials, Vol. 583, pp. 47-50, 2014

Online since:

September 2013




[1] H. Nishikawa, R. Hatanaka, M. Kusunoki, T. Hayami, S. Hontsu: Applied Physics Express, Vol. 1, (2008) 088001.


[2] S. Hontsu, K. Yoshikawa, N. Kato, Y. Kawakami, T. Hayami, H. Nishikawa, M. Kusunoki, K. Yamamoto: Journal of the Australian Ceramic Society, Vol. 47 (2011) pp.11-13.

[3] T. Hayami, S. Hontsu, Y. Higuchi, H. Nishikawa, M. Kusunoki: Clinical Oral Implants Research, Vol. 22 (2011) pp.774-776.


[4] Y. Hashimoto, M. Kusunoki, R. Hatanaka, K. Hamano, H. Nishikawa, Y. Hosoi, S. Hontsu, M. Nakamura: Materials in Clinical Applications VII (2006) pp.287-94.

[5] T. Hayami, K. Matsumura, M. Kusunoki, H. Nishikawa, S. Hontsu: Materials Letters, Vol. 61 (2007) pp.2667-2670.

[6] Y. Hashimoto, M. Kawashima, R. Hatanaka, M. Kusunoki, H. Nishikawa, S. Hontsu, M. Nakamura: Journal of Materials Science-Materials in Medicine, Vol. 18 (2007) pp.1457-1464.

[7] S. Hontsu, Y. Hashimoto, Y. Yoshikawa, M. Kusunoki, H. Nishikawa, A. Ametani: Journal of Hard Tissue Biology, Vol. 21 (2012) pp.181-187.

[8] M. Kusunoki, M. Kawasima, H. Nishikawa, K. Morimoto, T. Hayami, S. Hontsu, T. Kawai: Japanese Journal of Applied Physics Part 2-Letters & Express Letters, Vol. 44 (2005) pp.8-11.

[9] H. Imai, M. Kusunoki, Y. Hashimoto, H. Nishikawa, S. Hontsu: Transactions of the Institute of Electrical Engineers of Japan, Part C, Vol. 127C (2007) pp.1839-1342.

[10] T. Ikoma, M. Tagaya, T. Tonegawa, M. Okuda, N. Hanagata, T. Yoshioka, D. Chakarov, B. Kasemo, J. Tanaka: Key Engineering Materials, Vol. 396-398 (2009) pp.89-92.


[11] N. Tamai, A. Myoui, I. Kudawara, T. Ueda, H. Yoshikawa: Journal of Orthopaedic Science, Vol. 15 (2010) pp.560-568.


[12] Y. Ohbayashi, M. Miyake, S. Nagahata: BIOMATERIALS, Vol. 21 (2000) pp.501-509.

[13] C. J. Goodwin, S. J. Holt, P. A. Riley, S. Downes, N. J. Marshall: Biochemical and Biophysical Research Communications, Vol. 226 (1996) pp.935-941.


[14] M. J. Larsen, S. J. Jensen: Archives of Oral Biology, Vol. 34 (1989) pp.957-961.

[15] K. Sato, H. Yagishita, Y. Kanri, Y. Taya, Y. Soeno, R. Enari, T. Aoba: Japanese Association for Oral Biology, Vol. 43 (2001) pp.410-423.

[16] R. P. Shellis, R. M. Wilson: Journal of Colloid and Interface Science, Vol. 278 (2004) pp.325-332.

[17] M. Kusunoki, Y. Kawakami, T. Matsuda, H. Nishikawa, T. Hayami, S. Hontsu: Applied Physics Express, Vol. 3 (2010) 107003.