Elastic Properties of Thermo-Hydro-Mechanically Modified Bamboo (Guadua angustifolia Kunth) Measured in Tension


Article Preview

Guadua angustifolia Kunth (Guadua) was subjected to thermo-hydro-mechanical (THM) treatments that modified its microstructure and mechanical properties. THM treatment was applied to Guadua with the aim of tackling the difficulties in the fabrication of standardised construction materials and to gain a uniform fibre density profile that facilitates prediction of mechanical properties for structural design. Dry and water saturated Guadua samples were subjected to THM treatment. A densified homogenous flat sheet material was obtained. Mechanical properties of small clear specimens of THM modified Guadua were evaluated by testing in tension and compared to the results of the same test on a control specimen. Samples were tested in the elastic range to determine values for Modulus of Elasticity (MOE) and Poissons ratio. There was a significant increase in the tensile MOE values (parallel to the direction of the fibres) for densified samples. MOE values measured were 16.21 GPa, 22.80 GPa and 31.04 GPa for control, densified dry and densified water saturated samples respectively. Oven dry densities for these samples were 0.54 g/cm3, 0.81 g/cm3 and 0.83 g/cm3. Despite a 50 % reduction in the radial Poissons ratio for the water saturated sample, no further variation in the Poissons ratio as a result of densification was observed for control and densified dry samples. This paper presents the results of the first phase of a study focussed on the manufacturing of flat Guadua sheet (FGS) by THM treatment and the characterization of its mechanical properties. The achievement of a dimensionally stable FGS by THM modification, with a uniform density and achieved with reduced labour effort during manufacture, will be of key importance for the development of structural applications, and could have a significant impact in the bamboo industry. The final aim of the research at the University of Bath is the development of Cross Laminated Guadua (CLG) panels using THM modified and laminated FGS glued with a high performance resin.



Edited by:

Khosrow Ghavami, Normando Perazzo Barbosa, Ulisses Targino Bezerra and Alexandr Zhemchuzhnikov




H. F. Archila-Santos et al., "Elastic Properties of Thermo-Hydro-Mechanically Modified Bamboo (Guadua angustifolia Kunth) Measured in Tension", Key Engineering Materials, Vol. 600, pp. 111-120, 2014

Online since:

March 2014




* - Corresponding Author

[1] Ghavami, K. & Marinho A. B. Propriedades físicas e mecânicas do colmo inteiro do bambu da espécie Guadua angustifolia. (Physical and mechanical properties of the whole culm of bamboo of the Guadua angustifolia species). Revista Brasileira de Engenharia Agrícola e Ambiental, 9-1 (2005).

DOI: https://doi.org/10.1590/s1415-43662005000100016

[2] Osorio-Saraz, J. A., Velez-Restrepo, J. M. & Ciro-Velasquez, H. J. Determinación de la relación de poisson de la Guadua angustifolia Kunth a partir de procesamientos de imágenes y su relación con la estructura interna. Rev. Fac. Nal. Agr. Medellín, 60-2 (2007).

DOI: https://doi.org/10.14350/rig.58861

[3] Lugt, P. van der; Vogtländer, J.; Brezet, H. Bamboo, a sustainable solution for Western Europe-design cases, LCAs and land-use. INBAR Technical Report No. 30 (2009).

DOI: https://doi.org/10.1016/j.jclepro.2010.04.015

[4] Nakajima, M., Furuta, Y. and Ishimaru, Y. Thermal-softening properties and cooling set of water-saturated bamboo within proportional limit. J Wood Sci. 54 (2008) 278–284.

DOI: https://doi.org/10.1007/s10086-008-0952-x

[5] Tanaka, K., Ishitani, J. & Inoue, M. Improvement of strength performance for bamboo connector by densified technique. Journal of Structural and Construction Engineering (Transactions of AIJ) 73-632 (2008) 1805-1812.

DOI: https://doi.org/10.3130/aijs.73.1805

[6] Ansell, M. P. Wood: A 45th anniversary review of JMS papers Part 2. Wood modification, fire resistance, carbonization, wood-cement and wood-polymer composites. Journal of Materials Science. 47-2 (2012) pp.583-598.

DOI: https://doi.org/10.1007/s10853-011-5995-5

[7] Fang, Chang-Hua, Cloutier, A., Mariotti, N., Koubaa, A. & Blanchet P. Densification of Wood Veneers. Proceedings of the International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe – Timber Committee October 11-14, 2010, Geneva, Switzerland Paper WS-19.

[8] Kutnar, A., Kamke, F. A. & Sernek, M. Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci Technol. 43 (2009) 57–68.

DOI: https://doi.org/10.1007/s00226-008-0198-1

[9] Heger, F., Groux, M., Girardet, F., Welzbacher, C., Rapp, A. & Narvi, P. Mechanical and durability performance of THM-densified wood. Final Workshop COST Action E22 Environmental optimisation of wood protection, Lisboa-Portugal, 22nd March 2004. Available at: http: /www. bfafh. de/bibl/pdf/7thmproc. pdf.

[10] Buschow, K.H.J., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J. and Mahajan, S. Encyclopedia of Materials - Science and Technology, Volumes 1-11. Elsevier Press Ltd, Oxford, Major Reference Works, London, 2002 pp.9603-9751.

[11] Liese, W. The anatomy of bamboo culms. Technical Report No. 18, International Network for Bamboo and Rattan (INBAR) New Delhi, India, (1998).

[12] Cherdchim, B., Matan, N. and Kyokong, B. Effect of temperature on thermal softening of black sweet-bamboo culms (Dendrocalamus asper Backer) in linseed oil. Songklanakarin J. Sci. Technol. 26-6 (2004) 855-866.

[13] Kitazawa, K., Takahama, M. & Ogawa, H. Possibility of nosing of common Japanese bamboo. Journal of Materials Science 39 (2004) 1473-1476.

DOI: https://doi.org/10.1023/b:jmsc.0000013921.43208.ee

[14] Amada, S. and Lakes, R. S., Viscoelastic properties of bamboo, Journal of Materials Science, 32 (1997) 2693-2697.

[15] ISO-International Organization for Standardization, 2008. ISO 22157-1: 2004, Bamboo - Determination of physical and mechanical properties - Part 1: Requirements. Geneva, Switzerland.

[16] ISO-International Organization for Standardization, 2009. ISO/TR 22157-2: 2004, Bamboo -Determination of physical and mechanical properties - Part 2: Laboratory manual. Geneva, Switzerland.

[17] NTC-Norma Técnica Colombiana, NTC 5525-2007. Métodos de ensayo para determinar las propiedades físicas y mecánicas de la Guadua angustifolia Kunth. Instituto Colombiano de Normas Técnicas –ICONTEC- (2007).

[18] BSI-British Standard Institution, 1957. BS 373: 1957, Methods of testing small clear specimens of timber. London, UK. Available at: http: /www. bsigroup. com.

[19] BSI-British Standard Institution, 2010. BS EN 408: 2010+A1: 2012, Timber structures. Structural timber and glued laminated timber. Determination of some physical and mechanical properties. London, UK. Available at: http: /www. bsigroup. com.

DOI: https://doi.org/10.3403/30159970

[20] BSI-British Standard Institution, 2004. BS EN 789: 2004 Timber structures. Test methods. Determination of mechanical properties of wood based panels. London, UK. Available at: http: /www. bsigroup. com.

[21] Bodig, J. & Jayne, B. Mechanics of wood and wood composites, 2nd edition, Krieger Publishing Company, Florida, (1993).

[22] Wegst, U. G. K. Bending efficiency through property gradients in bamboo, palm, and wood-based composites. Journal of the Mechanical Behaviour of Biomedical Materials, 4-5 (2011) 744-755.

DOI: https://doi.org/10.1016/j.jmbbm.2011.02.013

[23] Correal D, J.F. & Arbeláez C, J. Influence of Age and Height Position on Colombian Guadua Angustifolia Bamboo Mechanical Properties. Maderas, Ciencia y Tecnología, 12-2 (2010) 105-113.

DOI: https://doi.org/10.4067/s0718-221x2010000200005

[24] Takeuchi, C., Rivera, J.F. & Rusinque, M. Structural behaviour of braced Guadua frames. In Proceedings of the 11th International Conference on Non-conventional Materials and Technologies (NOCMAT). Bath, UK (2009).

[25] Moreno-M., L.E., Osorio-Serna, L.R. & Trujillo De Los Ríos, E.E. Estudio de las propiedades mecánicas de haces de fibra de Guadua angustifolia. Ingeniería y desarrollo, 20 (Julio-Diciembre 2006) 125-133.

[26] Ghavami, K., Rodrigues, C.S. & Paciornik, S. Bamboo: Functionally graded composite material. Asian Journal of Civil Engineering and Housing, 4-1 (2003) 1-10.

[27] 2011, Li, H. & Shen, S. The mechanical properties of bamboo and vascular bundles. Journal of Materials Research. 26-21 (2011) 2749-2756.

[28] Obataya, E., Kitin, P. & Yamauchi, H. Bending characteristics of bamboo (Phyllostachys pubescens) with respect of its fibre-foam composite structure. Wood Sci Technol 41 (2007) 385-400.

DOI: https://doi.org/10.1007/s00226-007-0127-8

[29] Archila-Santos, H., Ansell M., Walker, P. Low Carbon Construction Using Guadua Bamboo in Colombia).  Key Engineering Materials. 517 (2012) 127-134.

DOI: https://doi.org/10.4028/www.scientific.net/kem.517.127

[30] Ansell, M. P. Wood-a 45th anniversary review of JMS papers. Part 1: The wood cell wall and mechanical properties. Journal of Materials Science. 46-23 (2011) 7357-7368.

DOI: https://doi.org/10.1007/s10853-011-5856-2