Heritage Earth Construction and Hygrothermal Comfort: The Challenge of Rebuilding in Central Chile


Article Preview

According to the latest official census of 2002, earth construction represented 5.5% of the Chilean building stock. These buildings of traditional construction techniques of unfired earth and straw blocks (adobe), rammed earth (tapial) or wattle and daub (quincha) form a large proportion of Chile’s National Monuments and heritage buildings. In addition to their heritage value, these buildings with their high thermal mass, respond well to the climate conditions of both the altiplano of northern Chile and the Central Valley, zones with high diurnal temperature oscillations, with typical daily temperature differences of up to 20°C. However following the 2005 earthquake in Tarapacá, northern Chile and that of the 27th February 2010 in Central Chile a serious rethink has been required as to the retention and restoration of adobe buildings. Public opinion has labelled earth construction as unsafe and most reconstruction to date has taken place with prefabricated timber solutions which lack the necessary thermal mass to respond well to the climatic conditions. At the same time research into the structural integrity, seismic resistance, maintenance and the living conditions provided by earth construction has been undertaken. In this wider context this paper presents the compilation of international and Chilean research into the hygrothermal properties of adobe construction, in addition to the authors insitu measurements of the temperature and relative humidity in two surviving adobe dwellings in the earthquake hit village of Chépica located in Chile´s Central valley. These measurements are compared with those of a dwelling rebuilt with straw bales and earth render in the same location. Based on this information the paper studies the challenge of rebuilding and restoring heritage buildings whilst providing occupants with the necessary levels of environmental comfort.



Edited by:

Prof. Khosrow Ghavami, Normando Perazzo Barbosa and Alexandr Zhemchuzhnikov




C. J. Whitman, "Heritage Earth Construction and Hygrothermal Comfort: The Challenge of Rebuilding in Central Chile", Key Engineering Materials, Vol. 600, pp. 186-195, 2014

Online since:

March 2014




[1] M. Bahamóndez Prieto and E. Muñoz González. Sitio Arqueológico Tulor 1: Consideraciones para su Conservación y Caracterización de Materiales. Conserva, Revista del Centro Nacional de Conservación y Restauración, N°1 Santiago de Chile (1997).

[2] Instituto Nacional de Estadistica de Chile, Censo Nacional 2002, Santiago de Chile. (2002) [Online] Available: http: /www. ine. cl/cd2002/ [21 April 2012].

[3] Servicio Sismológico, Departamento de Geofísica, Universidad de Chile [Online], Available: http: /www. sismologia. cl/seismo. html [19 April 2012].

[4] Ministerio de Vivienda y Urbanismo Ordenanza General de Urbanismo y Construcción. Santiago de Chile. (1992).

[5] Comité Adobe,. Informe técnico, Instituto de la Construcción, Santiago de Chile. (2005).

[6] Ministerio de Vivienda y Urbanismo. Plan de Reconstrucción, 4th Ed. Santiago de Chile (2011). [Online], Available: http: /www. minvu. cl/opensite_20111122105648. aspx [26 April 2012].

[7] M. Sarrazin. Carta al Director, La Tercera Edición digital. 21/04/2010 - 04: 00. [Online], Available: http: /latercera. com/contenido/896_253076_9. shtml [27 April 2012].

[8] M. Kottek, J. Grieser, C. Beck, B. Rudolf, and F. Rubel, World Map of the Köppen-Geiger climate classification updated. Meteorol. Z., 15, (2006). 259-263. [Online], Available: http: /koeppen-geiger. vu-wien. ac. at/present. htm [23 April 2012].

DOI: https://doi.org/10.1127/0941-2948/2006/0130

[9] C. Castillo Fontannaz. Estadistica Climatologia, Toma 1. Dirección Meteorológica de Chile, Santiago de Chile. (2001).

[10] H. Russo, G. Rodríguez, H. Behm, H. Pavez, J. MacDonald, and M. Testa, Architecture and Construction- Climatic Dwellings for Chile and Recommendations for Architectural Design, Chilean Standard NCh 1079 of 77 (2008).

[11] G. Minke. Building with earth: design and technology of a sustainable architecture. Birkhäuser Basel (2009).

[12] S. Goodhew, and R. Griffiths, Sustainable earth walls to meet the building regulations. Energy and Buildings. vol 37 (5) (2005) 451-459.

DOI: https://doi.org/10.1016/j.enbuild.2004.08.005

[13] C.J. Whitman and D. Fernández. The viability of improving energy efficiency and hygro-thermal comfort of rural social housing in central Chile using straw bale construction. In 2nd International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, June 28-30 (2010).

[14] P.G. McHenry, Adobe and Rammed Earth Buildings: Design and Construction. Wiley, New York (1984).

[15] G. Barrios, Tecnología del Adobe: Optimización por ensayos empíricos. Universidad Católica de Chile, Santiago de Chile. (1987) 92.

[16] Ministerio de Vivienda y Urbanismo, Proyectos Tipo Evaluados 12-04-2012, Santiago de Chile (2012). [Online] Available: http: /www. ine. cl/cd2002/ [28 April 2012].

[17] G. Armijo, Experiencias de mediciones de comportamiento térmico en mediaguas mejoradas con barro. Programa de construcción con Ayuda Mutua financiado por GTZ y organizado por Cáritas –Chile después del terremoto de 1985. Universidad Central, Santiago de Chile (1985).

DOI: https://doi.org/10.5354/0365-7779.1857.2240

[18] N. Stone, N. Thermal Performance of Straw Bale Wall System, Ecological Building Network (2003), [Online] Available: http: /www. ecobuildnetwork. org/pdfs/Thermal_properties. pdf [3rd March 2010].

[19] D. Quiun, A. San Bartolome, L. Zegarra, and A. Giesecke, Adobe Reforzado con mallas de alambre: Ensayos de Simulación sísmica y aplicación a construcciones reales. Pontificia Universidad Católica del Perú. (2005).