Optical Second Harmonic Generation as a Tool for In Situ, Real-Time Monitor of Thin Film Epitaxial Growth


Article Preview

Oxide-based hetero-structures are promising candidates for building the next generation of functional devices. In order to achieve this goal, it is required to have solid and reliable sensors for monitoring the growth of thin films with single-atomic-layer sensitivity. So far, the most popular in-situ diagnostic tool is Reflection High Energy Electron Diffraction, which provides information on the structural properties of the growing films, and not a direct access to the desired interfacial physical properties of interest. Furthermore, it needs a strong human-machine interaction, preventing its use into industrial mass production. Standard optics applied on buried interfaces suffers the disadvantage to have a probing depth which is orders of magnitude larger than the interface layer. Here we propose to overcome this problem by resorting to optical Second Harmonic Generation and we present some example to show the potential of this technique as a real-time monitor system for thin-film crystal growth.



Edited by:

Evangelos Hristoforou and Dr. Dimitros S. Vlachos




A. Rubano et al., "Optical Second Harmonic Generation as a Tool for In Situ, Real-Time Monitor of Thin Film Epitaxial Growth", Key Engineering Materials, Vol. 605, pp. 223-226, 2014

Online since:

April 2014




* - Corresponding Author

[1] E. Dagotto, Science 318 (2007), p.1076.

[2] A. Rubano, D. Paparo, A. Marino, D. Maccariello, F. Miletto Granozio, U. Scotti di Uccio, C. Richter, S. Paetel, J. Mannhart, L. Marrucci and M. Fiebig, Phys. Rev. B 83 (2011), p.155405.

DOI: https://doi.org/10.1103/physrevb.83.159906

[3] T. Günter, A. Rubano, D. Paparo, M. Lilienblum, L. Marrucci, F. Miletto Granozio, U. Scotti di Uccio, R. Jany, C. Richter, J. Mannhart and M. Fiebig, Phys. Rev. B 86 (2012), p.235418.

DOI: https://doi.org/10.1103/physrevb.86.235418

[4] A. Rubano, T. Günter, T. Fink, D. Paparo, L. Marrucci, C. Cancellieri, S. Gariglio, J. -M. Triscone, and M. Fiebig, Phys. Rev. B 88 (2013), p.035405.

DOI: https://doi.org/10.1103/physrevb.88.035405

[5] J.H. Haeni et al., Journal of Electroceramics 4 (2000), p.385.

[6] J. Choi et al., Appl. Phys. Lett. 79 (2001), p.1447.

[7] Y.R. Shen, Surf. Sci. 299/300 (1994), p.551.

[8] M. Radovic, N. Lampis, F. Miletto Granozio, P. Perna, Z. Ristic, M. Salluzzo, C. M. Schlepütz, and U. Scotti di Uccio, Appl. Phys. Lett. 94 (2009), p.022901.

DOI: https://doi.org/10.1063/1.3052606

[9] M.D. Biegalski, Y. Jia, D.G. Schlom, S. Trolier-McKinstry, S.K. Streiffer, V. Sherman, R. Uecker and P. Reiche, Appl. Phys. Lett. 88 (2006), p.192907.

DOI: https://doi.org/10.1063/1.2198088

[10] T. Hashimoto, T. Nishimatsu, H. Mizuseki, Y. Kawazoe, A. Sasaki and Y. Ikeda, Jpn. J. Appl. Phys. 44 (2005), p.7134.

[11] R. Woerdenweber, E. Hollmann, R. Ott, T. Huertgen and T.K. Lee, J. Electroceram. 22 (2009), p.363.

[12] M. Alexe and A. Gruverman, Nanoscale Characterisation of Ferroelectric Materials (Berlin: Springer, Germany 2004).

[13] T. Jungk, A. Hoffmann and E. Soergel, Appl. Phys. Lett. 89 (2006), p.163507.

[14] T. Jungk, A. Hoffmann and E. Soergel, New J. Phys. 11 (2009), p.033029.