A New Process Chain for Joining Sheet Metal to Fibre Composite Sheets


Article Preview

Mixed-Materials parts have great light-weight potential for the automotive application to reduce the carbon footprint. But the joining of fibre composite plastic sheets to metal sheets is in practical application limited to adhesive bonding or mechanical joining with additional fastener elements due to the large differences in physical properties. A new process chain based on plastic joining without fastener elements is proposed and first results on the mechanism and on the achievable strength of the new joints are shown. The process chain consists of three steps: First joining pins are added to the sheet metal by an additive manufacturing process. In a second step these pins are pierced through the fibre composite sheet with a local heating of the thermoplastic in an overlap setup. In the third and last step the joint is created by forming the pins with the upsetting process to create a shape lock. The shear strength of the joined specimens was tested in a tensile testing machine. The paper shows that even with a non-optimized initial setup joints can be realised and that the new process chain is a possible alternative to adhesive bonding.



Key Engineering Materials (Volumes 611-612)

Edited by:

Jari Larkiola






R. Plettke et al., "A New Process Chain for Joining Sheet Metal to Fibre Composite Sheets", Key Engineering Materials, Vols. 611-612, pp. 1468-1475, 2014

Online since:

May 2014




* - Corresponding Author

[1] I.A. Ashcroft, D.J. Hughes and S.J. Shaw, Adhesive bonding of fibre reinforced polymer composite materials, Assembly Automation 20 (2000) 2, pp.150-161.

DOI: 10.1108/01445150010321797

[2] S.D. Thoppul, J. Finegan and R.F. Gibson, Mechanics of mechanically fastened joints in polymer-matrix composite structures – A review, Composite Science and Technology 69 (2009), pp.301-329.

DOI: 10.1016/j.compscitech.2008.09.037

[3] P. Molitor, V. Barron and T. Young, Surface treatment of titanium for adhesive bonding to polymer composites: a review, International Journal of Adhesion and Adhesives 21 (2001) 2, pp.129-136.

DOI: 10.1016/s0143-7496(00)00044-0

[4] S. Ucsnik, M. Scheerer, S. Zaremba and D.H. Pahr, Experimental investigation of a novel hybrid metal-composite joining technology, Composites: Part A 41 (2010), pp.369-374.

DOI: 10.1016/j.compositesa.2009.11.003

[5] D. Drummer and T. Müller, Thermoplastische Hochleistungsfaserverbunde stehen vor einer großen Renaissance, Intelligenter Produzieren 3 (2010), pp.6-8.

[6] K. Friedrich and M. Hou, On stamp forming of curved and flexible geometry components from continuous glass fiber/polypropylene composites, Composites Part A: Applied Science and Manufacturing 29 (1998) 3, pp.217-226.

DOI: 10.1016/s1359-835x(97)00087-0

[7] M. Hou, Stamp forming of continuous glass fibre reinforced polypropylene, Composites Part A: Applied Science and Manufacturing 28 (1997) 8, pp.695-702.

DOI: 10.1016/s1359-835x(97)00013-4

[8] G.B. McGuinness and C.M. ÓBrádaigh, Characterisation of thermoplastic composite melts in rhombus-shear: the picture-frame experiment, Composites Part A: Applied Science and Manufacturing 29 (1998) 1–2, pp.115-132.

DOI: 10.1016/s1359-835x(97)00061-4

[9] S. R. Morris and C. T. Sun, Analysis of forming loads for thermoplastic composite laminates, Composites Part A: Applied Science and Manufacturing 27 (1996) 8, pp.633-640.

DOI: 10.1016/1359-835x(96)00031-0

[10] R. Lahr, Partielles Thermoformen endlosfaserverstärkter Thermoplaste, dissertation, Institut für Verbundwerkstoffe, Technische Universität Kaiserslautern, Kaiserslautern, (2007).

[11] H. Seidlitz, L. Kroll and L. Ulke-Winter, Kraftflussgerechte Punktverbindungen, Kunstoffe 3 (2011), pp.50-53.

[12] L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina and R.B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, Journal of Materials Science & Technology 28 (2012).

DOI: 10.1016/s1005-0302(12)60016-4

[13] S. Kaierle, A. Barroi, C. Noelke, J. Hermsdorf, L. Overmeyer and H. Haferkamp, Review on Laser Deposition Welding: From Micro to Macro, Physics Procedia 39 (2012), pp.336-345.

DOI: 10.1016/j.phpro.2012.10.046

[14] http: /www. ifw-dresden. de/userfiles/legacy/institutes/ikm/research/metallische-glaser-und-komposite/laserstrahlschmelzen/institutes/ikm/research/metallische-glaser-und-komposite/ laserstrahlschmelzen/maschine-de-en/slm-prinzip_engl. png/image; accessed January 13th, (2014).

In order to see related information, you need to Login.