Thermal Modeling in Composite Transmission Laser Welding Process: Light Scattering and Absorption Phenomena Coupling


Article Preview

In previous studies [1, , we have presented a detailed formulation of a macroscopic analytical model of the optical propagation of laser beams in the case of unidirectional thermoplastic composites materials. This analytical model presented a first step which concerns the estimation of the laser beam intensity at the welding interface. It describes the laser light path in scattering transparent composites (first component) by introducing light scattering ratio and scattering standard deviation. The absorption was assumed to be negligible in regard to the scattering effect. In this current paper, in order to describe completely the laser welding process in composite materials, we introduce the absorption phenomenon in the model, in the absorbing material (second component), in order to determine the radiative heat source generated at the welding interface. Finally, we will be able to perform a three dimensional temperature field calculation using a commercial FEM software. In laser welding process, the temperature distribution inside the irradiated materials is essential in order to optimize the process. Experimental measurements will be performed in order to valid the analytical model.



Key Engineering Materials (Volumes 611-612)

Edited by:

Jari Larkiola




A. C. Akue Asseko et al., "Thermal Modeling in Composite Transmission Laser Welding Process: Light Scattering and Absorption Phenomena Coupling", Key Engineering Materials, Vols. 611-612, pp. 1560-1567, 2014

Online since:

May 2014




[1] AC. Akué asséko, B. Cosson, F. Schmidt, Y. Le Maoult and E. Lafranche, Modelling and simulation of transmission laser welding process of thermoplastics composites, Esaform (2013).


[2] AC. Akué asséko, B. Cosson, F. Schmidt, Y. Le Maoult and E. Lafranche, Analytical and numerical modeling of light scattering in composite transmission laser welding process, DOI 10. 1007/s12289-013-1154-7. International Journal of Material Forming.


[3] G. N. Labeas, G. A. Moraitis, and C. V. Katsiropoulos, Optimization of Laser Transmission Welding Process for Thermoplastic Composite Parts using Thermo-Mechanical Simulation, Journal of Composite Materials, vol. 44, no. 1, p.113–130, Jan. (2010).


[4] N. S. Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy, and S. Ramesh Kumar, A transient finite element simulation of the temperature and bead profiles of T-joint laser welds, Materials & Design, vol. 31, no. 9, p.4528–4542, Oct. (2010).


[5] D. A. Grewell and A. Benatar, Plastics and Composites: Welding Handbook. Hanser Verlag, (2003).

[6] J. M. P. Coelho, M. A. Abreu, and F. Carvalho Rodrigues, Modelling the spot shape influence on high-speed transmission lap welding of thermoplastics films, Optics and Lasers in Engineering, vol. 46, no. 1, p.55–61, Jan. (2008).


[7] M. Ilie, J. -C. Kneip, S. Matteï, A. Nichici, C. Roze, and T. Girasole, Through-transmission laser welding of polymers – temperature field modeling and infrared investigation, Infrared Physics & Technology, vol. 51, no. 1, p.73–79, juillet (2007).


[8] M. Ilie, D. Grevey, S. Mattei, E. Cicala, and V. Stoica, Diode laser welding of ABS: Experiments and process modeling, arXiv: 1002. 1241, Feb. (2010).


[9] Z. B. Hou and R. Komanduri, General solutions for stationary/moving plane heat source problems in manufacturing and tribology, International journal of heat and mass transfer, vol. 43, no. 10, p.1679–1698, May (2000).


[10] K. J. Suthar, J. Patten, L. Dong, and H. Abdel-Aal, Estimation of Temperature Distribution in Silicon During Micro Laser Assisted Machining, p.301–309, Jan. (2008).


[11] M. Troughton, Chapter 13 - Laser Welding, in in Handbook of Plastics Joining, Norwich, NY: William Andrew Publishing, 1997, p.101–104.

[12] S. W. Churchill, G. C. Clark, and C. M. Sliepcevich, Light-scattering by very dense monodispersions of latex particles, Discuss. Faraday Soc., vol. 30, no. 0, p.192–199, Jan. (1960).


[13] M. N. Ozisik. Heat Transfer: A Basic Approach. (1984).

[14] D. Rosenthal. The theory of moving sources of heat and its application to metal treatments. ASME, Cambridge, (1946).

[15] C. MINGLIANG. Gap Bridging in laser transmission welding of thermoplastics. PhD thesis, Queen's University, Kingston, Ontario, Canada, (2009).

[16] Bappa Acherjee, Arunanshu S. Kuar , Souren Mitra and Dipten Misra, Effect of carbon black on temperature field and weld profile during laser transmission welding of polymers: A FEM study, Optics & Laser Technology., vol. 44, p.514–521, (2012).


[17] Bappa Acherjee, Arunanshu S. Kuar , Souren Mitra and Dipten Misra, Modeling of laser transmission contour welding process using FEA and DoE, Optics & Laser Technology., vol. 44, p.1281–1289, (2012).


[18] S Andrieu, Étude expérimentale et numérique du chauffage infrarouge de plaques thermoplastiques pour le thermoformage, PhD thesis, Ecole des Mines de Paris, (2005).

[19] J-L. Bailleul, D. Delaunay, Y. Jarny, T. Jurkowski, Thermal conductivity of unidirectional reinforced composite material. Experimental measurement as a function of state of cure., Journal of Reinforced Plastics and Composites, pp.52-64, (2001).


[20] Gill P-E, Murray W., Saunders M-A., User's guide for SNOPT version 7, Software for Large-Scale Nonlinear Programming, , (2008).

[21] Maxime Villière, Damien Lecointe, Vincent Sobotka, Nicolas Boyard and Didier Delaunay, Experimental determination and modeling of thermal conductivity tensor of carbon/epoxy composite, Composite part A, vol. 46, p.60–68, (2013).


[22] Nakouzi, Sawsane, Modélisation du procédé de cuisson de composites infusés par chauffage infra rouge, PhD thesis, Institut Clément Ader (ICA-Albi), (2012).