Temperature-Dependent Tension Plastic Deformation and Fracture Behavior of Ti-6.6Al-3.3Mo-1.8Zr-0.29Si Alloy at High Strain Rates

Abstract:

Article Preview

Titanium alloys have received great interest in the engineering applications requiring light weight and high impact resistance components. It is necessary to understand the mechanical properties of titanium alloys at high strain rates and various temperatures in the structural design. In the present paper, uniaxial tension tests at strain rates of 190, 500 and 1150s-1 and temperatures of 20, 150, 300°C are carried out using a modified split hopkinson tension bar system to investigate the effects of strain rate and temperature on tension behavior of the Ti-6.6Al-3.3Mo-1.8Zr-0.29Si alloy. Experimental results indicate that the alloy has the rate and temperature sensitivity and still keeps high strengths and toughness at temperature up to 300°C under high strain rate. SEM observations reveal that ductile fracture is the major fracture mode when the alloy is deformed at high strain rates.

Info:

Periodical:

Edited by:

Yeong-Maw Hwang and Cho-Pei Jiang

Pages:

115-120

Citation:

J. Zhang et al., "Temperature-Dependent Tension Plastic Deformation and Fracture Behavior of Ti-6.6Al-3.3Mo-1.8Zr-0.29Si Alloy at High Strain Rates", Key Engineering Materials, Vol. 626, pp. 115-120, 2015

Online since:

August 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] M. Doner, and H. Conrad, Deformation Mechanisms in Commercial Ti (0. 5 At. Pct Oineq) at Intermediate and High Temperatures (0. 3 - 0. 6 Tinm), Metall. Trans. A, 4 (1973), 2809-17.

DOI: https://doi.org/10.1007/bf02644581

[2] P. S. Follansbee, and G. T. Gray, An Analysis of the Low Temperature, Low and High Strain-Rate Deformation of Ti−6al−4v, Metall. Trans. A, 20 (1989), 863-74.

DOI: https://doi.org/10.1007/bf02651653

[3] R. E. Reed-Hill, C. V. Iswaran, and M. J. Kaufman, An Analysis of the Flow Stress of a Two-Phase Alloy System, Ti-6al-4v, Metall. Mater. Trans. A, 27 (1996), 3957-62.

DOI: https://doi.org/10.1007/bf02595644

[4] M. A. Greenfield, and H. Margolin, The Mechanism of Void Formation, Void Growth, and Tensile Fracture in an Alloy Consisting of Two Ductile Phases, Metall. Trans. A, 3 (1972), 2649-59.

DOI: https://doi.org/10.1007/bf02644241

[5] A. Gysler, and G. Lütjering, Influence of Test Temperature and Microstructure on the Tensile Properties of Titanium Alloys, Metall. Trans. A, 13 (1982), 1435-43.

DOI: https://doi.org/10.1007/bf02642882

[6] W. H. Miller, R. T. Chen, and E. A. Starke, Microstructure, Creep, and Tensile Deformation in Ti-6al-2nb-1ta-0. 8mo, Metall. Trans. A, 18 (1987), 1451-68.

DOI: https://doi.org/10.1007/bf02646658

[7] Dale J. McEldowney, Seshacharyulu Tamirisakandala, and Daniel B. Miracle, Heat-Treatment Effects on the Microstructure and Tensile Properties of Powder Metallurgy Ti-6al-4v Alloys Modified with Boron, Metall. Mater. Trans. A, 41 (2010), 1003-15.

DOI: https://doi.org/10.1007/s11661-009-0157-y

[8] P. D. Littlewood, and A. J. Wilkinson, Local Deformation Patterns in Ti–6al–4v under Tensile, Fatigue and Dwell Fatigue Loading, Int. J. FATIGUE, 43 (2012), 111-19.

DOI: https://doi.org/10.1016/j.ijfatigue.2012.03.001

[9] H. Zhao, Material Behaviour Characterisation Using Shpb Techniques, Tests and Simulations, Comput. Struct., 81 (2003), 1301-10.

DOI: https://doi.org/10.1016/s0045-7949(03)00044-0

[10] M. G. da Silva, and K. T. Ramesh, The Rate-Dependent Deformation and Localization of Fully Dense and Porous Ti-6al-4v, Mater. Sci. Eng. A, 232 (1997), 11-22.

DOI: https://doi.org/10.1016/s0921-5093(97)00076-2

[11] W. S. Lee, and C. F. Lin, Plastic Deformation and Fracture Behaviour of Ti–6al–4v Alloy Loaded with High Strain Rate under Various Temperatures, Mater. Sci. Eng. A, 241 (1998), 48-59.

DOI: https://doi.org/10.1016/s0921-5093(97)00471-1

[12] D. R. Chichili, K. T. Ramesh, and K. J. Hemker, The High-Strain-Rate Response of Alpha-Titanium: Experiments, Deformation Mechanisms and Modeling, Acta Mater., 46 (1998), 1025-43.

DOI: https://doi.org/10.1016/s1359-6454(97)00287-5

[13] Sia Nemat-Nasser, W. G. Guo, Vitali F. Nesterenko, S. S. Indrakanti, and Y. B. Gu, Dynamic Response of Conventional and Hot Isostatically Pressed Ti–6al–4v Alloys: Experiments and Modeling, Mech. Mater., 33 (2001), 425-39.

DOI: https://doi.org/10.1016/s0167-6636(01)00063-1

[14] A. Majorell, S. Srivatsa, and R. C. Picu, Mechanical Behavior of Ti–6al–4v at High and Moderate Temperatures—Part I: Experimental Results, Mater. Sci. Eng. A, 326 (2002), 297-305.

DOI: https://doi.org/10.1016/s0921-5093(01)01507-6

[15] X. H. Chen, Y. Wang, M. Gong, and Y. M. Xia, Dynamic Behavior of Sus304 Stainless Steel at Elevated Temperatures, J. Mater. Sci., 39 (2004), 4869-75.

DOI: https://doi.org/10.1023/b:jmsc.0000035327.55210.99

[16] Y. M. Xia, Y. Wang, Dynamic testing of materials with the rotating disk indirect bar-bar tensile impact apparatus, J. Test Eval., 35(1)(2007)1-5.

DOI: https://doi.org/10.1520/jte12436j

[17] W. Huang, X. Zan, X. Nie, M. Gong, Y. Wang, and Y. M. Xia, Experimental Study on the Dynamic Tensile Behavior of a Poly-Crystal Pure Titanium at Elevated Temperatures, Mater. Sci. Eng. A, 443 (2007), 33-41.

DOI: https://doi.org/10.1016/j.msea.2006.06.041