Energetics of Slip Deformation in Beta-Sn: A First-Principles Study


Article Preview

The generalized stacking fault (GSF) energy surfaces of (110), (101), (121), (001), and(100) planes in -Sn are analyzed using first-principles density functional theory calculations. Fromthe minimum energy paths (MEPs) on the GSF energy surfaces analyzed, energetically preferableslip paths of 13 nonequivalent slip systems in -Sn are investigated. It is found that the MEP of(110)[111]/2, (101)[010], (101)[111]/2, (121)[101], and (121)[111]/2 deviates from the straight linepath and takes a curve line path. The results indicate that perfect dislocations on these five slip systemsdissociate into partial dislocations as in cubic and hexagonal crystals.



Edited by:

Yeong-Maw Hwang and Cho-Pei Jiang




Y. Kinoshita and N. Ohno, "Energetics of Slip Deformation in Beta-Sn: A First-Principles Study", Key Engineering Materials, Vol. 626, pp. 46-49, 2015

Online since:

August 2014




* - Corresponding Author

[1] S. Park, R. Dhakal, and J. Gao: J. Electron. Mater Vol. 37 (2008), p.1139.

[2] L. P. Lehman, Y. Xing, T. R. Bieler, and E. J. Cotts: Acta Mater. Vol. 58 (2010), p.3546.

[3] G. I. Kirichenko: Phys. Met. Metall. Vol. 63 (1987), p.144.

[4] M. Nagasaka: Jpn. J. Appl. Phys. Vol. 28 (1989), p.446.

[5] B. Düzgün and I. Aytaş: Jpn. J. Appl. Phys. Vol. 32 (1993), p.3214.

[6] Y. Kinoshita, H. Matsushima, and N. Ohno: Modelling Simul. Mater. Sci. Eng. Vol. 20 (2012), art. 035003.

[7] G. Kresse and J. Hafner: Phys. Rev. B Vol. 47 (1993), p.558.

[8] G. Kresse and J. Furthmuller: Phys. Rev. B Vol. 54 (1996), p.11169.

[9] D. Vanderbilt: Phys. Rev. B Vol. 41 (1990), p.7892.

[10] J. P. Perdew and A. Zunger: Phys. Rev. B Vol. 23 (1981), p.5048.

[11] H. D. Monkhorst and J. D. Park: Phys. Rev. B Vol. 13 (1976), p.5188.