A Numerical Approach for Lower Bound Limit Analysis


Article Preview

In this paper, a numerical procedure for plastic limit analysis of 3-D elastic-perfectly plastic bodies under complex loads is presented. The method is based on the lower-bound limit theorem and von Mises yield criterion so that the lower-bound limit analysis can be conducted by solving a nonlinear mathematical programming problem. A SQP algorithm and a dimension reduction-based technique are used to solve the discretized finite element optimization formulation. A conception of active constraint set is introduced, so that the number of constraints can be reduced greatly. The basis vectors of reduced residual stress spaces are constructed by performing an equilibrium iteration procedure of elasto-plastic finite element analysis. The numerical procedure is applied to carry out the plastic limit analysis of pipelines with part-through slots under internal pressure, bending moment and axial force. The effects of different sizes of part-through slots on the limit loads of pipelines are studied.



Edited by:

Yeong-Maw Hwang and Cho-Pei Jiang




Y. H. Liu et al., "A Numerical Approach for Lower Bound Limit Analysis", Key Engineering Materials, Vol. 626, pp. 474-481, 2015

Online since:

August 2014




* - Corresponding Author

[1] B. Xu, B. Yang, Z. Xu and Y. Liu, Practical Computation of the Plastic Collapse Limit of Defective Pipelines under Complex Loadings, Key Engineering Materials, Vol. 177-180(2000), pp.691-702.

DOI: https://doi.org/10.4028/www.scientific.net/kem.177-180.691

[2] E. Stein, G. Zhang and J. A. König, Shakedown with Nonlinear Hardening Including Structural Computation Using Finite Element Method, Int. J. Plasticity, Vol. 8(1992), pp.1-31.

DOI: https://doi.org/10.1016/0749-6419(92)90036-c

[3] E. Stein, G. Zhang and Y. Huang, Modeling and Computation of Shakedown Problems for Nonlinear Hardening Materials, Comp. Meth. in App. Mech. and Eng., Vol. 103(1993), pp.247-272.

[4] K. Schittkowski, NLPQL: A Fortran Subroutine Solving Constrained Nonlinear Programming Problems, Annals of Operations Research, Vol. 5(1985), pp.485-500.

DOI: https://doi.org/10.1007/bf02022087

[5] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, pp.167-175, Academic Press, New York, (1981).

[6] M. J. D. Powell, A Fast Algorithm for Nonlinearly Constrained Optimization Calculations, in Numerical Analysis Proceeding, ed. G.A. Watson, Lecture Notes in Mathematics, Vol. 630, pp.155-157, Springer-Verlag, Berlin, Germany, (1978).

DOI: https://doi.org/10.1007/bfb0067703

[7] S. P. Han, Superlinearly Convergent Variable Metric Algorithms for General Nonlinear Programming Problems, Math. Progr., Vol. 11(1976), pp.263-282.

DOI: https://doi.org/10.1007/bf01580395

[8] R. Casciaro, G. Garcea, An iterative method for shakedown analysis, Comput. Methods Appl. Mech. Engrg. Vol. 191 (2002), p.5761–5792.

DOI: https://doi.org/10.1016/j.cma.2006.07.002

[9] G. Garcea, G. Armentano, S. Petrolo, R. Casciaro, Finite element shakedown analysis of two-dimensional structures, Int. J. Numer. Methods Engrg. Vol. 63 (2005), p.1174–1202.

DOI: https://doi.org/10.1002/nme.1316

[10] S. Chen, Y. Liu, Z. Cen, Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming, Comput. Methods Appl. Mech. Engrg. Vol. 197 (2008) , p.3911–3921.

DOI: https://doi.org/10.1016/j.cma.2008.03.009

[11] T. Tran, G. Liu, H. Nguyen-Xuan, T. Nguyen-Thoi, An edge-based smoothed finite element method for primal-dual shakedown analysis of structures, Int. J. Numer. Methods Engrg. Vol. 82 (2010), p.917–938.

DOI: https://doi.org/10.1002/nme.2804

[12] J.W. Simon, D. Weichert. Numerical lower bound shakedown analysis of engineering structures, Comput. Methods Appl. Mech. Engrg. Vol. 200 (2011), p.2828–2839.

DOI: https://doi.org/10.1016/j.cma.2011.05.006

[13] J. J. Muñoz, A. Huerta J. BonetJ. Peraire. A note on upper bound formulations in limit analysis. Int. J. Numer. Meth. Engng, Vol. 91 (2012), p.896–908.

DOI: https://doi.org/10.1002/nme.4303