Effect of Directional Grain Structure and Strain Rate on Impact Properties and Dislocation Substructure of 6061-T6 Aluminum Alloy

Abstract:

Article Preview

The effect of directional grain structure and strain rate on the impact properties and dislocation substructure of 6061-T6 aluminum alloy is studied. Impact tests are performed at strain rates ranging from 1x103 to 5x103s-1 using a split Hopkinson pressure bar system. Cylindrical specimens are prepared from the rolled plates in longitudinal direction, transverse direction and through-thickness direction, respectively. The results show that the flow stress is strongly dependent on the strain rate and displays complex variations with grain structure direction. The flow stress increases with increasing strain rate. For all tested strain rates, the flow stress is the highest in the transverse specimen, followed by the through-thickness specimen and longitudinal specimen. However, at the strain rate of 5x103s-1, the flow stress in longitudinal specimen is higher than that in through-thickness specimen due to the change of dislocation multiplication rate. The plastic flow occurs within the deformation regions, and becomes more pronounced at high strain rates, especially for the longitudinal specimen. Dislocation density increases markedly with increasing strain rate. Strengthening effect is the highest in the transverse specimen, followed by the longitudinal specimen and through-thickness specimen.

Info:

Periodical:

Edited by:

Yeong-Maw Hwang and Cho-Pei Jiang

Pages:

50-56

Citation:

W. S. Lee and M. H. Liu, "Effect of Directional Grain Structure and Strain Rate on Impact Properties and Dislocation Substructure of 6061-T6 Aluminum Alloy", Key Engineering Materials, Vol. 626, pp. 50-56, 2015

Online since:

August 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] L. P. Troger, E. A. Starke, Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy, Mater. Sci. Eng. A 277 (2000) 102-113.

[2] Aluminum: Properties and Physical Metallurgy, J. E. Hatch Ed., American Society for Metals, Metals Park, (1984).

[3] A. S. Khan, Y. S. Suh, R. Kazmi, Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys, Int. J. Plasticity 20 (2004) 2233-2248.

DOI: https://doi.org/10.1016/j.ijplas.2003.06.005

[4] R. Liang, A. S. Khan, A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures, Int. J. Plasticity15 (1999) 963-980.

DOI: https://doi.org/10.1016/s0749-6419(99)00021-2

[5] W. S. Lee, T. H. Chen, C. F. Lin and W. Z. Luo, Impact Response and Microstructural Evolution of 316L Stainless Steel under Ambient and Elevated Temperature Conditions, Metall. Mater. Trans. A, 43A (2012) 3998-4005.

DOI: https://doi.org/10.1007/s11661-012-1233-2

[6] D. M. Norfleet, D. M. Dimiduk, S. J. Polasik, M. D. Uchi, M. J. Mills, Dislocation structures and their relationship to strength in deformed nickel microcrystals, Acta Mater. 56 (2008) 2988-3001.

DOI: https://doi.org/10.1016/j.actamat.2008.02.046

[7] H. Jarmakani, J. M. McNaney, B. Kad, D. Orlikowski, J. H. Nguyeu, M. A. Meyers, Dynamic response of single crystalline copper subjected to quasi-isentropic, gas-gun driven loading, Mater. Sci. Eng. A, 463 (2007) 249-262.

DOI: https://doi.org/10.1016/j.msea.2006.09.118

[8] M. E Nixon, O. Cazacu, R. A. Lebensohn, Anisotropic response of high-purity α-titanium: Experimental characterization and constitutive modeling, Int. J. Plasticity 26 (2010) 516-532.

DOI: https://doi.org/10.1016/j.ijplas.2009.08.007

[9] F. J. MacMaster, K. S. Chan, S. C. Bergsma, M. E. Kassner, Aluminum alloy 6069 part II: fracture toughness of 6061-T6 and 6069-T6, Mater. Sci. Eng. A, 289 (2000) 54-59.

DOI: https://doi.org/10.1016/s0921-5093(00)00918-7

[10] G. M. D. Almaraz, V. H. M. Lemus, J. J. V. Lopez, Rotating bending fatigue tests for aluminum alloy 6061-T6, close to elastic limit and with artificial pitting holes, Procedia Eng. 2 (2010) 805-813.

DOI: https://doi.org/10.1016/j.proeng.2010.03.087

[11] R. Braun, You have full text access to this contentEffect of thermal exposure on the microstructure, tensile properties and the corrosion behaviour of 6061 aluminium alloy sheet, Mater. Corros. 56 (2005) 159-165.

DOI: https://doi.org/10.1002/maco.200403825

[12] W. S. Lee, J. C. Shyu, S. T. Chiou, Effect of strain rate on impact response and dislocation substructure of 6061-T6 aluminum alloy, Scripta Mater., 42 (2000) 51-56.

DOI: https://doi.org/10.1016/s1359-6462(99)00308-5

[13] U. S. Lindholm, Some experiments with the split hopkinson pressure bar∗, J. Mech. Phys. Solids 12 (1964) 317-335.

[14] W. S. Lee and T. H. Chen, Dynamic Mechanical Response and Microstructural Evolution of High Strength Aluminum-Scandium (Al-Sc) Alloy, Mater. Trans., 47 (2006) 355-363.

DOI: https://doi.org/10.2320/matertrans.47.355

[15] P. S. Follansbee and U. F. Kocks, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta Metall., 36 (1988) 81-93.

DOI: https://doi.org/10.1016/0001-6160(88)90030-2