Magnetic Properties of Mg0.4Ca0.6Fe2O4 Nanoparticles Synthesized by Sol-Gel Method for Hyperthermia Treatment

Abstract:

Article Preview

Powders of Mg0.4Ca0.6Fe2O4 were prepared by sol-gel using ethylene glycol and Mg, Ca and Fe nitrates as starting materials. Those powders were heat treated at different temperatures (300, 400, 500 and 600 °C) for 30 min. The materials obtained were characterized by X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). The Ca-Mg ferrite with the most appropriate magnetic properties was further analyzed by transmission electron microscopy (TEM). The heating capability of the nanoferrites was also tested via magnetic induction. The XRD patterns of these Ca-Mg ferrites showed a cubic inverse spinel structure. Furthermore, neither traces of hematite nor orthorhombic Ca ferrite phases were detected. Moreover, all the Ca-Mg ferrites are superparamagnetic and the particle size distribution of these Ca-Mg magnetic nanoparticles exhibits an average diameter within the range of 10-14 nm. The needed temperature for hyperthermia treatment was achieved at around 12 min.

Info:

Periodical:

Main Theme:

Edited by:

Maria-Pau Ginebra, Cristina Canal, Montserrat Espanol, Edgar B. Montufar and Roman A. Perez

Pages:

193-197

Citation:

A.M. Escamilla-Pérez et al., "Magnetic Properties of Mg0.4Ca0.6Fe2O4 Nanoparticles Synthesized by Sol-Gel Method for Hyperthermia Treatment", Key Engineering Materials, Vol. 631, pp. 193-197, 2015

Online since:

November 2014

Export:

Price:

$41.00

* - Corresponding Author

[1] A. -A. Guay-Bégin, P. Chevallier, L. Faucher, S. Turgeon, M. -A. Fortin, Langmuir : the ACS journal of surfaces and colloids, 2011; 28: 774-782.

[2] C. Alexiou, R. Tietze, E. Schreiber, R. Jurgons, H. Richter, L. Trahms, H. Rahn, S. Odenbach, S. Lyer, Journal of Magnetism and Magnetic Materials, 2011; 323: 1404-1407.

DOI: https://doi.org/10.1016/j.jmmm.2010.11.059

[3] D. Kim, S. Lee, K. Im, K. Kim, K. Kim, I. Shim, M. Lee, Y. -K. Lee, Current Applied Physics, 2006; 6: e242-e246.

[4] X. Xu, H. Shen, J. Xu, M. Xie, X. Li, Applied Surface Science, 2006; 253: 2158-2164.

[5] D. Caruntu, G. Caruntu, C.J. O'Connor, Journal of Physics D: Applied Physics, 2007; 40: 5801-5809.

[6] R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Advanced Materials, 2010; 22: 2729–2742.

[7] A. Figuerola, R. Di Corato, L. Manna, T. Pellegrino, Pharmacological Research, 2010; 62: 126–143.

[8] M. Hessien, M. Rashad, K. El-Barawy, I. Ibrahim, Journal of Magnetism and Magnetic Materials, 2008; 320: 1615-1621.

[9] H. Hirazawa, S. Kusamoto, H. Aono, T. Naohara, K. Mori, Y. Hattori, T. Maehara, Y. Watanabe, Journal of Alloys and Compounds, 2008; 461: 467–473.

DOI: https://doi.org/10.1016/j.jallcom.2007.07.024

[10] M.R. Horsman, J. Overgaard, Clinical Oncology, 2007; 19: 418-426.

[11] A.K. Gupta, M. Gupta, Biomaterials, 2005; 26: 3995-4021.

[12] M.G. Navarro, V.G. González, M.H. Rivera, M.R. Melo, A.T. Castro, Ingenierías, 2010; 13: 23-33.

[13] R. Ghosh, L. Pradhan, Y. P. Devi, S. S. Meena, R. Tewari, A. Kumar, S. Sharma, N. S. Gajbhiye, R. K. Vatsa, B. N. Pandey, and R. S. Ningthoujam, Journal of Materials Chemistry, 2011; 21: 13388–13398.

DOI: https://doi.org/10.1039/c1jm10092k