Spine-Ghost: A New Bioactive Cement for Vertebroplasty


Article Preview

An innovative, resorbable and injectable composite cement (Spine-Ghost) to be used for augmentation and restoration of fractured vertebrae was developed. Type III α-calcium sulfate hemihydrate (CSH) was selected as the bioresorbable matrix, while spray-dried mesoporous bioactive particles (SD-MBP, composition 80/20% mol SiO2/CaO), were added to impart high bioactive properties to the cement; a glass-ceramic containing zirconia was chosen as a second dispersed phase, in order to increase the radiopacity of the material. After mixing with water, an injectable paste was obtained. The developed cement proved to be mechanically compatible with healthy cancellous bone, resorbable and bioactive by soaking in simulated body fluid (SBF), cytocompatible through in-vitro cell cultures and it could be injected in ex-vivo sheep vertebra. Comparisons with a commercial control were carried out.



Main Theme:

Edited by:

Maria-Pau Ginebra, Cristina Canal, Montserrat Espanol, Edgar B. Montufar and Roman A. Perez




C. Vitale-Brovarone et al., "Spine-Ghost: A New Bioactive Cement for Vertebroplasty", Key Engineering Materials, Vol. 631, pp. 43-47, 2015

Online since:

November 2014




[1] A.M. Oleksik, S. Ewing, W. Shen, N.M. van Schoor, P. Lips, Impact of incident vertebral fractures on health related quality of life (HRQOL) in postmenopausal women with prevalent vertebral fractures, Osteoporos Int 16(8) (2005) 861-870.

DOI: https://doi.org/10.1007/s00198-004-1774-3

[2] I.H. Lieberman, D. Togawa, M.M. Kayanja, Vertebroplasty and kyphoplasty: filler materials, Spine J 5 (2005) 305S-316S.

DOI: https://doi.org/10.1016/j.spinee.2005.02.020

[3] M. Nilsson, J-S. Wang, L. Wielanek, K.E. Tanner, L. Lidgren, Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute, J. Bone Joint Surg. [Br] 86-B (2004) 120-125.

[4] M. Nilsson, E. Fernandez, S. Sarda, L. Lidgren, J.A. Planell, Characterixation of a novel calcium phosphate/sulphate bone cement, J. Biomed. Mater. Res. 61 (2002) 600-607.

DOI: https://doi.org/10.1002/jbm.10268

[5] C. Vitale-Brovarone, E. Vernè, M. Bergui, B. Onida, F. Baino, M. Miola, S. Ferraris, F. Tallia, PCT/IB2011/052094.

[6] A.B.D. Nandiyanto, K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges, Adv. Powder Tech. 22 (2011) 1–19.

DOI: https://doi.org/10.1016/j.apt.2010.09.011

[7] L.L. Hench, Genetic design of bioactive glass, J. Eur. Ceram. Soc. 29 (2009) 1257-1265.

[8] X. Yan, C. Yu, X. Zhou, J. Tang, D. Zhao, Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities, Angew. Chem. Int. Ed. 43 (2004) 5980 –5984.

DOI: https://doi.org/10.1002/anie.200460598

[9] N. Andersson, P.C.A. Alberius, J.S. Pedersen, L. Bergström, Microporous Mesoporous Mater. 72 (2004) 175-183.

[10] F. Baino, S. Fiorilli, R. Mortera, B. Onida, E. Saino, L. Visai, E. Vernè, C. Vitale-Brovarone, Mesoporous bioactive glass as a functional system for bone regeneration and controlled drug release, J. Appl. Biomater. Function Biomater 10 (2012).

DOI: https://doi.org/10.5301/jabfm.2012.9270

[11] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915.

DOI: https://doi.org/10.1016/j.biomaterials.2006.01.017

[12] F.C.M. Driessens, J.A. Planell, M.G. Boltong, I. Khairoun, M.P. Ginebra, Osteotransductive bone cements, Proc. Instn. Mech. Engrs. 212H (1998) 427-435.

DOI: https://doi.org/10.1243/0954411981534196