Transparent Hydroxyapatite Obtained through Spark Plasma Sintering: Optical and Mechanical Properties

Abstract:

Article Preview

Transparent bioceramics have great potential for applications in the biomedical field as they facilitate direct observation of the interactions at biomaterial – cell / tissue interfaces. Thus far, sintering of transparent hydroxyapatite (HA) usually involves application of extraordinarily high pressure and / or long duration. This study attempts to fabricate transparent HA by a direct and fast Spark Plasma Sintering (SPS) process using three different types of raw powder: micro-spheres (MS), nanorods (NR) and nanospheres (NS). The optical and mechanical properties of the sintered pellets were examined and compared. The highest total forward transmittance (TFT) showed by sintered MS pellet (~2 mm thick) was 85% in the visible spectrum, whereas sintered NR and NS pellets were either translucent or opaque. Although lowest degree of transparency was observed for NS pellets, they demonstrated highest Young’s modulus (E), hardness (H) and fracture toughness (KIC). The eminent KIC of NS pellets benefited mainly from its self-toughened microstructure.

Info:

Periodical:

Main Theme:

Edited by:

Maria-Pau Ginebra, Cristina Canal, Montserrat Espanol, Edgar B. Montufar and Roman A. Perez

Pages:

51-56

DOI:

10.4028/www.scientific.net/KEM.631.51

Citation:

Z. Li and K. A. Khor, "Transparent Hydroxyapatite Obtained through Spark Plasma Sintering: Optical and Mechanical Properties", Key Engineering Materials, Vol. 631, pp. 51-56, 2015

Online since:

November 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] X.W. Tan, A. Riau, Z.L. Shi, A.C.S. Tan, K.G. Neoh, K.A. Khor, R.W. Beuerman, D. Tan, J.S. Mehta, In vitro effect of a corrosive hostile ocular surface on candidate biomaterials for keratoprosthesis skirt, British Journal of Ophthalmology. 96 (2012).

DOI: 10.1136/bjophthalmol-2012-301633

[2] X.W. Tan, R.W. Beuerman, Z.L. Shi, K.G. Neoh, D. Tan, K.A. Khor, J.S. Mehta, In vivo evaluation of titanium oxide and hydroxyapatite as an artificial cornea skirt, Journal of Materials Science: Materials in Medicine. 23 (2012) 1063-1072.

DOI: 10.1007/s10856-012-4578-6

[3] N. Kotobuki, K. Ioku, D. Kawagoe, H. Fujimori, S. Goto, H. Ohgushi, Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics, Biomaterials. 26 (2005) 779-785.

DOI: 10.1016/j.biomaterials.2004.03.020

[4] M. Eriksson, Y. Liu, J. Hu, L. Gao, M. Nygren, Z. Shen, Transparent hydroxyapatite ceramics with nanograin structure prepared by high pressure spark plasma sintering at the minimized sintering temperature, Journal of the European Ceramic Society. 31 (2011).

DOI: 10.1016/j.jeurceramsoc.2011.03.021

[5] J. Wang, L.L. Shaw, Transparent nanocrystalline hydroxyapatite by pressure-assisted sintering, Scripta Materialia. 63 (2010) 593-596.

DOI: 10.1016/j.scriptamat.2010.06.002

[6] Y. Watanabe, T. Ikoma, A. Monkawa, Y. Suetsugu, H. Yamada, J. Tanaka, Y. Moriyoshi, Fabrication of transparent hydroxyapatite sintered body with high crystal orientation by pulse electric current sintering, Journal of the American Ceramic Society. 88 (2005).

DOI: 10.1111/j.1551-2916.2004.00041.x

[7] Y.W. Gu, N.H. Loh, K.A. Khor, S.B. Tor, P. Cheang, Spark plasma sintering of hydroxyapatite powders, Biomaterials. 23 (2002) 37-43.

DOI: 10.1016/s0142-9612(01)00076-x

[8] G. Anstis, P. Chantikul, B.R. Lawn, D. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, Journal of the American Ceramic Society. 64 (1981) 533-538.

DOI: 10.1111/j.1151-2916.1981.tb10320.x

[9] M.I. Mendelson, Average grain size in polycrystalline ceramics, Journal of the American Ceramic Society. 52 (1969) 443-446.

DOI: 10.1111/j.1151-2916.1969.tb11975.x

[10] A. Krell, P. Blank, H. Ma, T. Hutzler, M.P. Bruggen, R. Apetz, Transparent sintered corundum with high hardness and strength, Journal of the American Ceramic Society. 86 (2003) 12-18.

DOI: 10.1111/j.1151-2916.2003.tb03270.x

[11] A. Krell, P. Blank, H. Ma, T. Hutzler, M. Nebelung, Processing of high‐density submicrometer Al2O3 for new applications, Journal of the American Ceramic Society. 86 (2003) 546-53.

DOI: 10.1111/j.1151-2916.2003.tb03339.x

[12] H. Zhang, B. -N. Kim, K. Morita, H. Yoshida, J. -H. Lim, K. Hiraga, Optical properties and microstructure of nanocrystalline cubic zirconia prepared by high-pressure Spark Plasma Sintering, Journal of the American Ceramic Society. 94 (2011).

DOI: 10.1111/j.1551-2916.2011.04477.x

[13] B. -N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, Y. Kagawa, Microstructure and optical properties of transparent alumina, Acta Materialia. 57 (2009) 1319-1326.

DOI: 10.1016/j.actamat.2008.11.010

[14] R. Apetz, M.P. Bruggen, Transparent alumina: a light‐scattering model, Journal of the American Ceramic Society. 86 (2003) 480-486.

DOI: 10.1111/j.1151-2916.2003.tb03325.x

[15] Z. Shen, Z. Zhao, H. Peng, M. Nygren, Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening, Nature. 417 (2002) 266-269.

DOI: 10.1038/417266a

In order to see related information, you need to Login.