Experimental Verification of a Benchmark Forming Simulation


Article Preview

Forming of near-net-shaped and load-adapted functional components, as it is developed in the Transregional Collaborative Research Centre on Sheet-Bulk Metal Forming SFB/TR 73, causes different problems, which lead to non-optimal manufacturing results. For these high complex processes the prediction of forming effects can only be realized by simulations. A stamping process of pressing eight punches into a circular blank is chosen for the considered investigations. This reference process is designed to reflect the main aspects, which strongly affect the final outcome of forming processes. These are the orthotropic material behaviour, the optimal design of the initial blank and the influences of different contact and friction laws. The aim of this work is to verify the results of finite element computations for the proposed forming process by experiments. Evaluation methods are presented to detect the influence of the anisotropy and also to quantify the optimal blank design, which is determined by inverse form finding. The manufacturing accuracy of the die plate and the corresponding roughness data of the milled surface are analysed, whereas metrological investigations are required. This is accomplished by the help of advanced measurement techniques like a multi-sensor fringe projection system and a white light interferometer. Regarding the geometry of the punches, micromilling of the die plate is also a real challenge, especially due to the hardness of the high-speed steel ASP 2023 (approx. 63 HRC). The surface roughness of the workpiece before and after the forming process is evaluated to gain auxiliary data for enhancing the friction modelling and to characterise the contact behaviour.



Main Theme:

Edited by:

M. Merklein, J. Duflou, A. Leacock, F. Micari and H. Hagenah




P. Landkammer et al., "Experimental Verification of a Benchmark Forming Simulation", Key Engineering Materials, Vol. 639, pp. 251-258, 2015

Online since:

March 2015




* - Corresponding Author

[1] M. Merklein, J. M. Allwood, B. A. Behrens, A. Brosius, H. Hagenah, K. Kuzman, K. Mori, A. E. Tekkaya, A. Weckenmann, Bulk forming of sheet metal, in: CIRP Annals – Manufacturing Technology, Vol. 61, 2 (2012), 725-745.

DOI: https://doi.org/10.1016/j.cirp.2012.05.007

[2] S. Schmaltz, P. Landkammer, F. Beyer, D. Kumor, A. Rademacher, H. Blum, P. Steinmann, K. Willner, Vorstellung eines Simulationsbenchmarks für die Blechmassivumformung, in: M. Merklein, B. -A. Behrens, A. E. Tekkaya (Eds. ), Tagungsband 2. Workshop Blechmassivumformung, 2013, 53-68.

[3] P. Landkammer, P. Steinmann, A fast approach to shape optimisation by using the inverse fem, Key Engineering Materials, Vol. 611 (2014) 1404-1412.

DOI: https://doi.org/10.4028/www.scientific.net/kem.611-612.1404

[4] U. Vierzigmann, T. Schneider, J. Koch et al., Untersuchung von Tailored Surfaces für die Blechmassivumformung mittels angepasstem Ringstauchversuch, in: M. Merklein, B. -A. Behrens, A. E. Tekkaya (Eds. ), Tagungsband 2. Workshop Blechmassivumformung, 2013, 137-162.

[5] G. Bissacco, H. Hansen, L. De Chiffre, Micromilling of hardened tool steel for mould making applications, in: Journal of Materials Processing Technology Vol. 167 (2005), 201-207.

DOI: https://doi.org/10.1016/j.jmatprotec.2005.05.029

[6] D. Biermann, A. Baschin, E. Krebs, J. Schlenker, Manufacturing of dies from hardened tool steels by 3-axis micromilling, in: Production Engineering Vol. 2 (2011), 209-217.

DOI: https://doi.org/10.1007/s11740-010-0293-7

[7] C. Ohrt, M. Kästner, E. Reithmeier, A. Weckenmann, J. Weickmann, Optische Inspektion von Blechmassivumformteilen und -werkzeugen mit feinen Nebenformelementen, in: Technisches Messen tm Vol. 79 (2012) 2, 95-102.

DOI: https://doi.org/10.1524/teme.2012.0159

[8] C. Ohrt, W. Hartmann, M. Kästner, A. Weckenmann, T. Hausotte, E. Reithmeier, Holistic measurement in the sheet-bulk metal forming process with fringe projection, in: scientific. net (Eds. ): Key Engineering Materials KEM Vol. 504 (2012).

DOI: https://doi.org/10.4028/www.scientific.net/kem.504-506.1005

[9] J. Weickmann, A. Weckenmann, P. -F. Brenner, Automatic, Task-Sensitive and Simulation-Based Optimization of Fringe Projection Measurements, in: scientific. net (Eds. ): Key Engineering Materials KEM Vol. 437 (2010), 439-443.

DOI: https://doi.org/10.4028/www.scientific.net/kem.437.439

[10] R. Hill, Constitutive modelling of orthotropic plasticity in sheet metals, in: J. Mech. Phys. Solids, Vol. 38, 3 (1990), 405-417.

[11] R. Hill, A theory of the yielding and plastic flow of anisotropic metals, in: Proc. Roy. Soc. London, 193 (1948): 281–297.

[12] S. Schmaltz, K. Willner, Identification of orthotropic plastic material parameters for deep drawing steel using DIC and FEMU, Computational Plasticity XI – Fundamentals and Applications, Vol. 11 (2011), 241-250.

[13] S. Govindjee, P. A. Mihalic, Computational methods for inverse finite elastostatics, in: Comp. Meth. Appl. Mech. Engrg. Vol. 136, 1-2 (1996), 47-57.

[14] U. Vierzigmann, M. Merklein, U. Engel, Friction conditions in Sheet-Bulk metal forming, in: Procedia Engineering, Vol. 19 (2011), 377-382.

DOI: https://doi.org/10.1016/j.proeng.2011.11.128

Fetching data from Crossref.
This may take some time to load.