Dependence of NiTi Alloy Microstructure on the Conditions of Powder Metallurgy Production

Abstract:

Article Preview

The aim of this work was to describe the dependence of microstructure of NiTi shape memory alloy on the conditions of powder metallurgy processing route. The technology consisted of blending of elemental Ni and Ti powders, uniaxial cold pressing and reactive sintering. The effects of reactive sintering temperature, heating rate, holding duration and particle size were determined. The proposed technology can be used as the alternative production route of NiTi to minimize the contamination of the alloy.

Info:

Periodical:

Edited by:

Josef Kasl and Dagmar Jandová

Pages:

95-101

Citation:

P. Novák et al., "Dependence of NiTi Alloy Microstructure on the Conditions of Powder Metallurgy Production", Key Engineering Materials, Vol. 647, pp. 95-101, 2015

Online since:

May 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson: A review of shape memory alloy research, applications and opportunities, Materials and Design 56 (2014) 1078–1113.

DOI: https://doi.org/10.1016/j.matdes.2013.11.084

[2] Duerig T., Pelton A., Trepanier Ch.: Nitinol - PART I Mechanisms and Behavior, SMST e-Elastic newsletter, ASM International (2011).

[3] M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri: Manufacturing and processing of NiTi implants: A review, Progress in Materials Science, 57 (2012) 911-946.

DOI: https://doi.org/10.1016/j.pmatsci.2011.11.001

[4] D. Vojtěch, M. Voděrová, J. Kubásek, P. Novák, P. Šedá, A. Michalcová, J. Fojt, J. Hanuš, O. Mestek: Effects of short-time heat treatment and subsequent chemical surface treatment on the mechanical properties, low-cycle fatigue behavior and corrosion resistance of a Ni–Ti (50. 9at. % Ni) biomedical alloy wire used for the manufacture of stents, Materials Science and Engineering: A, 528 (2011).

DOI: https://doi.org/10.1016/j.msea.2010.10.043

[5] P. Novák, A. Michalcová, J. Šerák, D. Vojtěch, T. Fabián, S. Randáková, F. Průša, V. Knotek: M. Novák: Preparation of Ti–Al–Si alloys by reactive sintering, Journal of Alloys and Compounds 470 (2009) 123-126.

DOI: https://doi.org/10.1016/j.jallcom.2008.02.046

[6] C.L. Chu, C.Y. Chung, P.H. Lin, S.D. Wang: Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis, Materials Science and Engineering A366 (2004) 114-119.

DOI: https://doi.org/10.1016/j.msea.2003.08.118

[7] S. Wisutmethangoon, N. Denmud, L. Sikong: Characteristics and compressive properties of porous NiTi alloy synthesized by SHS technique, Materials Science and Engineering A515 (2009) 93-97.

DOI: https://doi.org/10.1016/j.msea.2009.02.055

[8] T.B. Massalski: Binary Alloy Phase Diagrams, ASM, Materials Park, (1990).

[9] P. Novák, T. Popela, J. Kubásek, J. Šerák, D. Vojtěch, A. Michalcová: Effect of reactive sintering conditions on microstructure of in-situ titanium aluminide-silicide composites, Powder Metallurgy 54 (2011) 50-55.

DOI: https://doi.org/10.1179/174329009x409651

[10] P. Novák, A. Michalcová, I. Marek, M. Mudrová, K. Saksl, J. Bednarčík, P. Zikmund, D. Vojtěch: On the formation of intermetallics in Fe–Al system – An in situ XRD study, Intermetallics 32 (2013) 127-136.

DOI: https://doi.org/10.1016/j.intermet.2012.08.020

Fetching data from Crossref.
This may take some time to load.