A Concept Selection Method for Designing Climbing Robots


Article Preview

This paper presents a concept selection methodology, inspired by the Verein Deutscher Ingenieure (VDI) model and Pugh's weighted matrix method, for designing climbing robots conceptually based on an up-to-date literature review. The proposed method is illustrated with a case study of ongoing research, the investigation of an adaptable and energetically autonomous climbing robot, in Loughborough University.



Edited by:

Fang-Jung Shiou, Jeng-Ywan Jeng and Liang-Kuang Chen




J. L. Guo et al., "A Concept Selection Method for Designing Climbing Robots", Key Engineering Materials, Vol. 649, pp. 22-29, 2015

Online since:

June 2015




* - Corresponding Author

[1] A. Nishi, Y. Wakasugi, K. Watanabe, Design of a Robot Capable of Moving on a Vertical Wall, Adv. Robotics. 1 (1986): 33-45.

DOI: https://doi.org/10.1163/156855386x00300

[2] M.F. Silva, J. Machado, J.K. Tar, A Survey of Technologies and Applications for Climbing Robots Locomotion and Adhesion, in: Climbing and Walking Robots, Behnam Miripour (Ed. ), InTech, Rijeka, 2008, pp.1-22.

DOI: https://doi.org/10.5772/200

[3] B. Chu, K. Jung, C.S. Han, et al, A Survey of Climbing Robots: Locomotion and Adhesion, Int. J. Precis. Eng. Manuf. 11 (2010): 633-647.

DOI: https://doi.org/10.1007/s12541-010-0075-3

[4] D. Schmidt, K. Berns, Climbing Robots for Maintenance and Inspections of Vertical Structures - A Survey of Design Aspects and Technologies, Robot. Auton. Syst. 61 (2013): 1288-1305.

DOI: https://doi.org/10.1016/j.robot.2013.09.002

[5] D. Dethe Raju, S.B. Jaju, Developments in Wall Climbing Robots: A Review, Int. J. Eng. Res. Gen. Sci. 2 (2014): 33-42.

[6] H.Q. Wang, A. Yamamoto, T. Higuchi, Electrostatic-motor-driven Electroadhesive Robot, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp.914-919.

DOI: https://doi.org/10.1109/iros.2012.6385758

[7] M. Belleville, E. Cantatore, H. Fanet, et al, Energy Autonomous Systems: Future Trends in Devices, Technology, and Systems, (2009).

[8] M. Ziegenmeyer, K. Uhl, J.M. Zöllner, et al, Autonomous Inspection of Complex Environments by Means of Semantic Techniques, Workshops of the 5th IFIP Conference on Artificial Intelligence Applications & Innovations, 2009, pp.303-310.

[9] M.F. Silva, R.S. Barbosa, A.L.C. Oliveira, Climbing Robot for Ferromagnetic Surfaces with Dynamic Adjustment of the Adhesion System, J. Robotics. 2012 (2012): 1-16.

DOI: https://doi.org/10.1155/2012/906545

[10] Z.Q. Bi, Y. S Guan, S. Z Chen, et al, A Miniature Biped Wall-climbing Robot for Inspection of Magnetic Metal Surfaces, IEEE International Conference on Robotics and Biomimetics, 2012, pp.324-329.

DOI: https://doi.org/10.1109/robio.2012.6490987

[11] C. Hillenbrand, D. Schmidt, K. Berns, Cromsci - A Climbing Robot with Multiple Sucking Chambers for Inspection Tasks, Ind. Robot. 35 (2008): 228-237.

DOI: https://doi.org/10.1142/9789812835772_0038

[12] W. Wang, K. Wang, G.H. Zong, et al, Principle and Experiment of Vibrating Suction Method for Wall-climbing Robot, Vacuum. 85 (2010): 107-112.

DOI: https://doi.org/10.1016/j.vacuum.2010.04.010

[13] W. Guo, M. Zhong, M.T. Li, et al, Design of a Six Legged Wall-Climbing Robot, IEEE International Conference on Advanced Robotics and its Social Impacts, 2008, pp.1-4.

DOI: https://doi.org/10.1109/arso.2008.4653597

[14] L. Illingworth, D. Reinfeld, Vortex Attractor for Planar and Non-planar Surfaces. U. S. Patent 6, 619, 922 (2003).

[15] J.Z. Xiao, A. Sadegh, City-Climber: A New Generation Wall-climbing Robots Climbing and Walking Robots: towards New Applications, Houxiang Zhang (Ed. ), InTech, Rijeka, 2007, 383-402.

DOI: https://doi.org/10.5772/5090

[16] M. Journee, X.Q. Chen, J. Robertson, et al, An Investigation into Improved Non-Contact Adhesion Mechanism Suitable for Wall Climbing Robotic Applications, IEEE International Conference on Robotics and Automation, 2011, pp.4915-4920.

DOI: https://doi.org/10.1109/icra.2011.5979842

[17] K.A. Daltorio, T.E. Wei, A.D. Horchler, et al, Mini-WhegsTM Climbs Steep Surfaces Using Insect-inspired Attachment Mechanisms, Int. J. Robot. Res. 28 (2009): 285-302.

DOI: https://doi.org/10.1177/0278364908095334

[18] A.T. Asbeck, S. Kim, M.R. Cutkosky, et al, Scaling Hard Vertical Surfaces with Compliant Microspine Arrays, Int. J. Robot. Res. 25 (2006): 1165-1179.

DOI: https://doi.org/10.15607/rss.2005.i.026

[19] T.W. Seo, M. Sitti, Tank-Like Module-Based Climbing Robot Using Directional and Passive Compliant Joints, IEEE-ASME T. Mech. 18 (2013): 397-408.

DOI: https://doi.org/10.1109/tmech.2011.2182617

[20] H. Prahlad, R. Pelrine, S. Stanford, et al, Electroadhesive Robots - Wall Climbing Robots Enabled by a Novel, Robust, and Electrically Controllable Adhesion Technology, IEEE International Conference on Robotics and Automation, 2008, pp.3028-3033.

DOI: https://doi.org/10.1109/robot.2008.4543670

[21] N. Wiltsie, M. Lanzetta, K. Iagnemma, A Controllably Adhesive Climbing Robot Using Magnetorheological Fluid, IEEE International Conference on Technologies for Practical Robot Applications, 2012, pp.91-96.

DOI: https://doi.org/10.1109/tepra.2012.6215660

[22] M. Osswald, F. Iida, Design and Control of a Climbing Robot Based on Hot Melt Adhesion, Robotics Auton. Syst. 61 (2013): 616-625.

DOI: https://doi.org/10.1016/j.robot.2013.02.004

[23] A. Yamamoto, T. Nakashim, T. Higuchi, Wall Climbing Mechanisms Using Electrostatic Attraction Generated by Flexible Electrodes, International Symposium on Micro-Nano Mechatronics and Human Science, 2007, pp.389-394.

DOI: https://doi.org/10.1109/mhs.2007.4420886

[24] H. Zhang, Habilitation Thesis: Integration of Biological Inspirations and Modular Approach for Designing Climbing Robots (2010).

[25] VDI Guidelines: Systematic Approach to the Design of Technical Systems and Products (1987).

[26] S. Pugh, Total Design: Integrated Methods for Successful Product Engineering, Addison-Wesley, (1991).

[27] R. Gasparini, N. Chawla, S. Tosunoglu, Cybernetic Helper: A Wireless Self-charging Robot, in Florida Conference on Recent Advances in Robotics, 2012, pp.1-5.

[28] R. Finkelstein, Energetically Autonomous Tactical Robot and Associated Methodology of Operation, U. S. Patent 0, 155, 156 (2010).