Understanding the Colloidal Behaviour or 45S5 Bioactive Glass Particles to Obtain Bioactive-Glass Based Composite Coatings by EPD

Abstract:

Article Preview

The interaction between bioactive glass particles and polymers with different functional groups has been established in this work to better understand and control the colloidal processing of the bioactive glass phase. Cationic polyvinylpyrrolidone (PVP), anionic polyacrylic acid (PAA) and neutral polyvinyl alcohol (PVA) were selected and the surface reactions in alcoholic media and between bioactive glass particles and polymers were considered. All three polymers were successfully employed to obtain soft composite coatings incorporating bioactive glass particles.

Info:

Periodical:

Edited by:

A.R. Boccaccini, J.H. Dickerson, B. Ferrari, O. Van der Biest and T. Uchikoshi

Pages:

15-19

Citation:

S. Cabanas-Polo and A. R. Boccaccini, "Understanding the Colloidal Behaviour or 45S5 Bioactive Glass Particles to Obtain Bioactive-Glass Based Composite Coatings by EPD", Key Engineering Materials, Vol. 654, pp. 15-19, 2015

Online since:

July 2015

Export:

Price:

$41.00

* - Corresponding Author

[1] L.L. Hench, Biomaterials: a forecast for the future, Biomaterials. 19 (1998) 1419–1423.

DOI: https://doi.org/10.1016/s0142-9612(98)00133-1

[2] S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma, A.P. Tomsia, Bioactive glass coatings for orthopedic metallic implants, J. Eur. Ceram. Soc. 23 (2003) 2921–2930.

DOI: https://doi.org/10.1016/s0955-2219(03)00303-0

[3] J. Ballarre, I. Manjubala, W.H. Schreiner, J.C. Orellano, P. Fratzl, S. Ceré, Improving the osteointegration and bone-implant interface by incorporation of bioactive particles in sol-gel coatings of stainless steel implants., Acta Biomater. 6 (2010).

DOI: https://doi.org/10.1016/j.actbio.2009.10.015

[4] U. Brohede, S. Zhao, F. Lindberg, A. Mihranyan, J. Forsgren, M. Strømme, et al., A novel graded bioactive high adhesion implant coating, Appl. Surf. Sci. 255 (2009) 7723–7728.

DOI: https://doi.org/10.1016/j.apsusc.2009.04.149

[5] J.M. Gomez-Vega, E. Saiz, a P. Tomsia, G.W. Marshall, S.J. Marshall, Bioactive glass coatings with hydroxyapatite and Bioglass particles on Ti-based implants. 1. Processing., Biomaterials. 21 (2000) 105–111.

DOI: https://doi.org/10.1016/s0142-9612(99)00131-3

[6] A.R. Boccaccini, S. Keim, R. Ma, Y. Li, I. Zhitomirsky, Electrophoretic deposition of biomaterials., J. R. Soc. Interface. 7 Suppl 5 (2010) S581–613.

DOI: https://doi.org/10.1098/rsif.2010.0156.focus

[7] O.O. Van Der Biest, L.J. Vandeperre, Electrophoretic deposition of materials, Annu. Rev. Mater. Sci. 29 (1999) 327–352.

DOI: https://doi.org/10.1146/annurev.matsci.29.1.327

[8] L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci. 52 (2007) 1–61.

[9] M. Verde, M. Peiteado, a C. Caballero, M. Villegas, B. Ferrari, Electrophoretic deposition of transparent ZnO thin films from highly stabilized colloidal suspensions., J. Colloid Interface Sci. 373 (2012) 27–33.

DOI: https://doi.org/10.1016/j.jcis.2011.09.039

[10] I. Zhitomirsky, Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects, Adv. Colloid Interface Sci. 97 (2002) 279–317.

DOI: https://doi.org/10.1016/s0001-8686(01)00068-9

[11] F. Pishbin, a. Simchi, M.P. Ryan, a. R. Boccaccini, Electrophoretic deposition of chitosan/45S5 Bioglass® composite coatings for orthopaedic applications, Surf. Coatings Technol. 205 (2011) 5260–5268.

DOI: https://doi.org/10.1016/j.surfcoat.2011.05.026