How Electrophoretic Deposition with Ligand-Free Platinum Nanoparticles Affects Contact Angle


Article Preview

Electrophoretic deposition of ligand-free platinum nanoparticles has been studied to elucidate how wettability, indicated by contact angle measurements, is linked to vital parameters of the electrophoretic deposition process. These parameters, namely the colloid concentration, electric field strength and deposition time, have been systematically varied in order to determine their influence on the contact angle. Additionally, scanning electron microscopy has been used to confirm the homogeneity of the achieved coatings.



Edited by:

A.R. Boccaccini, J.H. Dickerson, B. Ferrari, O. Van der Biest and T. Uchikoshi




A. Heinemann et al., "How Electrophoretic Deposition with Ligand-Free Platinum Nanoparticles Affects Contact Angle", Key Engineering Materials, Vol. 654, pp. 218-223, 2015

Online since:

July 2015




* - Corresponding Author

[1] H. Fouad, R. Elleithy, High density polyethylene/graphite nano-composites for total hip joint replacements, Processing and in vitro characterization, J. Mech. Behav. Biomed. 4 (7) (2011) 1376–1383.


[2] A. Neumeister, D. Bartke, N. Bärsch, T. Weingärtner, L. Guetaz, A. Montani, G. Compagnini, S. Barcikowski, Interface of nanoparticle-coated electropolished stents, Langmuir 28 (2012) 12060-12066.


[3] M. S. Lord, M. Foss. F. Besenbacher, Influence of nanoscale surface topography on protein adsorption and cellular response, Nano Today 5 (2010) 66-78.


[4] C. Chang-Hwan, H. H. Sepideh, M. W. Benjamin, C. Y. D. James, E. B. Ramin, K. Chang-Jin, Cell interaction with three-dimensional sharp-tip nanotopography, Biomaterials 28 (9) (2007) 1672–1679.


[5] B. J. C. Thomas, M. S. P. Shaffer, S. Freeman, M. Koopman, K. Chawla, A. Boccaccini, Electrophoretic Deposition of Carbon Nanotubes on Metallic Surfaces, Key. Eng. Mat. 314 (2006) 141–146.


[6] B. Neirinck, O. Van der Biest, J. Vleugels, A Current Opinion on Electrophoretic Deposition in Pulsed and Alternating Fields, J. Phys. Chem. B 117 (6) (2013) 1516–1526.


[7] A. Menendez-Manjon, J. Jakobi, K. Schwabe, J. K. Krauss, S. Barcikowski, Mobility of Nanoparticles Generated by Femtosecond Laser Ablation in Liquids and its Application to Surface Patterning, J. Laser Micro. Nanoen. 4 (2) (2009) 95–99.


[8] C. Streich, S. Koenen, K. Peneva, M. Lelle, S. Barcikowski: Appl. Surf. Sci. (2015), doi: 10. 1016/j. apsusc. 2014. 12. 159.

[9] T. L. Doane, C. Chuang, R. J. Hill, C. Burda, Nanoparticle ζ –Potentials, Accounts Chem. Res. 45 (3) (2012) 317-326.


[10] P. Wagener, A. Schwenke, S. Barcikowski, How Citrate Ligands Affect Nanoparticle Adsorption to Microparticle Supports, Langmuir. 28 (2012) 6132-6140.


[11] S. Barcikowski, G. Compagnini, Advanced nanoparticle generation and excitation by lasers in liquids, Phys. Chem. Chem. Phys. 15 (2013) 3022–3026.


[12] C. Rehbock, J. Jakobi, L. Gamrad, S. van der Meer, D. Tiedemann, U. Taylor, W. Kues, D. Rath, S. Barcikowski, Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays, Beilstein J. Nanotechnol. 5 (2014).


[13] D. Tiedemann, U. Taylor, C. Rehbock, J. Jakobi, S. Klein, A. W. Kues, S. Barcikowski, D. Rath, Reprotoxicity of gold, silver, and gold-silver alloy nanoparticles on mammalian gametes, Analyst 139 (2014) 931–942.


[14] R. Wenzel, Resistance of solid surfaces to wetting by water, Industrial Eng. Chem. 28 (8) (1936) 988-994.

[15] S. Koenen, R. Streubel, J. Jakobi, K. Schwabe, J. K. Krauss, S. Barcikowski, Continuous Electrophoretic Deposition and Electrophoretic Mobility of Ligand-Free, Metal Nanoparticles in Liquid Flow, J. Electrochem. Soc., 162 (4) (2015) D174-D179.