Modification of Polyaniline-Based Gas Sensor by Electrophoretic Deposition of Metal Nanoparticles in Ionic Liquids

Abstract:

Article Preview

Nanoparticles synthesized in various ionic liquids (ILs) were immobilized by electrophoretic deposition (EPD) at the surface of a gas sensor made of thin polyaniline (PAni) film. We used pulsed DC voltage to overcome electrochemical treatment in IL-based electrolytes. In spite that EPD is commonly used for synthesis of nanoparticle films or coatings, here we just functionalized the surface of PAni by scattered nanoparticles. Immobilized nanoparticles were observed by SEM imaging and dynamic responses of gas sensors functionalized by different nanoparticles (Ni, Ni-Fe and Ag-Cu) were compared. Using the EPD technique, sensitivity or selectivity of a gas sensor based on PAni can be improved easily.

Info:

Periodical:

Edited by:

A.R. Boccaccini, J.H. Dickerson, B. Ferrari, O. Van der Biest and T. Uchikoshi

Pages:

224-229

Citation:

P. Kunzo et al., "Modification of Polyaniline-Based Gas Sensor by Electrophoretic Deposition of Metal Nanoparticles in Ionic Liquids", Key Engineering Materials, Vol. 654, pp. 224-229, 2015

Online since:

July 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] V. V. Singh, A.K. Nigam, A. Batra, M. Boopathi, B. Singh, R. Vijayaraghavan, Applications of Ionic Liquids in Electrochemical Sensors and Biosensors, Int. J. Electrochem. 2012 (2012) 1–19.

DOI: https://doi.org/10.1155/2012/165683

[2] F. Chen, Q. Qing, J. Xia, J. Li, N. Tao, Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution., J. Am. Chem. Soc. 131 (2009) 9908–9.

DOI: https://doi.org/10.1021/ja9041862

[3] D. Braga, I. Gutiérrez Lezama, H. Berger, A.F. Morpurgo, Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors., Nano Lett. 12 (2012) 5218–23.

DOI: https://doi.org/10.1021/nl302389d

[4] Y.S. Nanayakkara, H. Moon, D.W. Armstrong, A Tunable Ionic Liquid Based RC Filter Using Electrowetting: A New Concept, ACS Appl. Mater. Interfaces. 2 (2010) 1785–1787.

DOI: https://doi.org/10.1021/am100269d

[5] S. Imaizumi, Y. Ohtsuki, T. Yasuda, H. Kokubo, M. Watanabe, Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials., ACS Appl. Mater. Interfaces. 5 (2013) 6307–15.

DOI: https://doi.org/10.1021/am401351q

[6] Z. Ma, J. Yu, S. Dai, Preparation of inorganic materials using ionic liquids., Adv. Mater. 22 (2010) 261–85.

DOI: https://doi.org/10.1002/adma.200900603

[7] F. Zhou, Y. Liang, W. Liu, Ionic liquid lubricants: designed chemistry for engineering applications., Chem. Soc. Rev. 38 (2009) 2590–9.

[8] T. Torimoto, K. Okazaki, T. Kiyama, K. Hirahara, N. Tanaka, S. Kuwabata, Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles, Appl. Phys. Lett. 89 (2006) 243117.

DOI: https://doi.org/10.1063/1.2404975

[9] K. Okazaki, T. Kiyama, K. Hirahara, N. Tanaka, S. Kuwabata, T. Torimoto, Single-step synthesis of gold–silver alloy nanoparticles in ionic liquids by a sputter deposition technique, Chem. Commun. (2008) 691.

DOI: https://doi.org/10.1039/b714761a

[10] C.W. Scheeren, G. Machado, J. Dupont, P.F.P. Fichtner, S.R. Texeira, Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions., Inorg. Chem. 42 (2003).

DOI: https://doi.org/10.1021/ic034453r

[11] L.S. Ott, M.L. Cline, M. Deetlefs, K.R. Seddon, R.G. Finke, Nanoclusters in ionic liquids: evidence for N-heterocyclic carbene formation from imidazolium-based ionic liquids detected by (2)H NMR., J. Am. Chem. Soc. 127 (2005) 5758–9.

DOI: https://doi.org/10.1021/ja0423320

[12] D.R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth, G.B. Deacon, Low viscosity ionic liquids based on organic salts of the dicyanamide anion, Chem. Commun. (2001) 1430–1431.

DOI: https://doi.org/10.1039/b103064g

[13] Y. Hatakeyama, S. Takahashi, K. Nishikawa, Can Temperature Control the Size of Au Nanoparticles Prepared in Ionic Liquids by the Sputter Deposition Technique?, J. Phys. Chem. C. 114 (2010) 11098–11102.

DOI: https://doi.org/10.1021/jp102763n

[14] K.R. Seddon, A. Stark, M. -J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure Appl. Chem. 72 (2000) 2275–2287.

DOI: https://doi.org/10.1351/pac200072122275

[15] P. Kunzo, P. Lobotka, M. Micusik, E. Kovacova, Palladium-free hydrogen sensor based on oxygen-plasma-treated polyaniline thin film, Sensors Actuators B Chem. 171-172 (2012) 838–845.

DOI: https://doi.org/10.1016/j.snb.2012.05.080

[16] S. Jiang, J. Chen, J. Tang, E. Jin, L. Kong, W. Zhang, et al., Au nanoparticles-functionalized two-dimensional patterned conducting PANI nanobowl monolayer for gas sensor, Sensors Actuators B Chem. 140 (2009) 520–524.

DOI: https://doi.org/10.1016/j.snb.2009.04.060

[17] S. Sharma, C. Nirkhe, S. Pethkar, A. a. Athawale, Chloroform vapour sensor based on copper/polyaniline nanocomposite, Sensors Actuators B Chem. 85 (2002) 131–136.

DOI: https://doi.org/10.1016/s0925-4005(02)00064-3

[18] A.A. Athawale, S.V. Bhagwat, P.P. Katre, Nanocomposite of Pd–polyaniline as a selective methanol sensor, Sensors Actuators B Chem. 114 (2006) 263–267.

DOI: https://doi.org/10.1016/j.snb.2005.05.009

[19] A. Choudhury, Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity, Sensors Actuators B Chem. 138 (2009) 318–325.

DOI: https://doi.org/10.1016/j.snb.2009.01.019

[20] J. Stejskal, I. Sapurina, M. Trchová, Polyaniline nanostructures and the role of aniline oligomers in their formation, Prog. Polym. Sci. 35 (2010) 1420–1481.

DOI: https://doi.org/10.1016/j.progpolymsci.2010.07.006

[21] P. Lobotka, P. Kunzo, E. Kovacova, I. Vavra, Z. Krizanova, V. Smatko, et al., Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing, Thin Solid Films. 519 (2011) 4123–4127.

DOI: https://doi.org/10.1016/j.tsf.2011.01.177

[22] F. Grillon, D. Fayeulle, M. Jeandin, Quantitative image analysis of electrophoretic coatings, J. Mater. Sci. Lett. 11 (1992) 272–275.

DOI: https://doi.org/10.1007/bf00729410

[23] L. Besra, T. Uchikoshi, T.S. Suzuki, Y. Sakka, Bubble-Free Aqueous Electrophoretic Deposition (EPD) by Pulse-Potential Application, J. Am. Ceram. Soc. 91 (2008) 3154–3159.

DOI: https://doi.org/10.1111/j.1551-2916.2008.02591.x

Fetching data from Crossref.
This may take some time to load.