Study of the Electrophoretic Deposition of Chitosan/Halloysite Nanotubes/Titanium Dioxide Composite Coatings Using Taguchi Experimental Design Approach


Article Preview

This study presents experimental results on the electrophoretic deposition (EPD) of chitosan/halloysite nanotube/titanium dioxide composite coatings based on the Taguchi design of experiments (DOE) approach. Taguchi array of L18 type with mixed levels of the control factor was used to study the influence of EPD parameters, including halloysite nanotubes concentration, electric voltage and deposition time, on deposition yield. For identifying the significant factors that affected the deposition yield, multivariate analysis of variance (MANOVA) and regression analysis based on partial least-square method were used. The coatings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy analyses, respectively. It was found that the deposition time has significantly influenced the deposition rate but the halloysite nanotube concentration and the applied voltage have the smallest effect on the deposition. The optimum condition for high yield of deposition with low standard deviation is achieved when the concentration of halloysite nanotubes is 0.3 g/L and the applied voltage is 40 volt with 300 sec. as a deposition time. The predicted EPD conditions were verified by experiments and qualitative agreement was obtained.



Edited by:

A.R. Boccaccini, J.H. Dickerson, B. Ferrari, O. Van der Biest and T. Uchikoshi




N. S. Jackoub Raddaha et al., "Study of the Electrophoretic Deposition of Chitosan/Halloysite Nanotubes/Titanium Dioxide Composite Coatings Using Taguchi Experimental Design Approach", Key Engineering Materials, Vol. 654, pp. 230-239, 2015

Online since:

July 2015




[1] A. R. Boccaccini, S. Keim, R. Ma, Y. Li and Zhitomirsky, Electrophoretic deposition of biomaterials, J. R. Soc. Interface, 7 (2010) S581-613.

DOI: 10.1098/rsif.2010.0156.focus

[2] J. Li, I. Zhitomirsky, Cathodic electrophoretic deposition of manganese dioxide films, Colloids Surf. A 348 (2009) 248-253.

DOI: 10.1016/j.colsurfa.2009.07.035

[3] M. Cheong, I. Zhitomirsky, Electrodeposition of alginic acid and composite films, Colloids Surf. A 328 (2008) 73-78.

DOI: 10.1016/j.colsurfa.2008.06.019

[4] Y. Li, K. Wu, I. Zhitomirsky, Electrodeposition of composite zinc oxide–chitosan films, Colloids Surf. A 356 (2010) 63-70.

DOI: 10.1016/j.colsurfa.2009.12.037

[5] L. Altomare, L. Draghi, R. Chiesa and L. De Nardo, Morphology tuning of chitosan films via electrochemical deposition, Mater. Lett. 78 (2012) 18-21.

DOI: 10.1016/j.matlet.2012.03.035

[6] M. Dash, F. Chiellini, R. M. Ottenbrite and E. Chiellini, Prog. chitosan—a versatile semi-synthetic polymer in biomedical applications, Polym. Sci. 36 (2011) 981-1014.

DOI: 10.1016/j.progpolymsci.2011.02.001

[7] M. N. R. Kumar, A review of chitin and chitosan applications, React. Funct. Polym. 46 (2000) 1-27.

[8] M. Du, B. Guo, D. Jia, Newly emerging applications of halloysite nanotubes: a review, Polym. Int. 59 (2010) 574-582.

[9] L. Guimaraes, A. N. Enyashin, G. Seifert, H. A. Duarte, Structural, Electronic, and Mechanical Properties of Single-Walled Halloysite Nanotube Models, J. Phys. Chem. C114 (2011) 11358-11363.

DOI: 10.1021/jp100902e

[10] M. Liu, B. Guo, Q. Zou, M. Du, D. Jia, Interactions between halloysite nanotubes and 2, 5-bis (2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites, Nanotechnology 19 (2008) 205709/1-205709/10.

DOI: 10.1088/0957-4484/19/20/205709

[11] X. Sun, Y. Zhang, H. Shen, N. Jia, Direct electrochemistry and electrocatalysis of horseradish peroxidase based on halloysite nanotubes/chitosan nanocomposite film, Electrochim. Acta 56 (2010) 700-705.

DOI: 10.1016/j.electacta.2010.09.095

[12] K. Sunada, Y. Kilkuchi, K. Hashimoto and A. Fujishima, Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts, Environ. Sci. Technol. 32 (1998) 726-728.

DOI: 10.1021/es970860o

[13] C. Cui, H. Liu, Y. Liu, Y. Li, J. Sun, R. Wang and S. Liu, Fabrication and biocompatibility of nano-TiO2/titanium alloys biomaterials, Matter. Lett. 59 (2005) 3144-3148.

DOI: 10.1016/j.matlet.2005.05.037

[14] T. Kokubo, H. M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials 24 (3) (2003) 2161-2175.

DOI: 10.1016/s0142-9612(03)00044-9

[15] J. Cho, S. Schaab, J. A. Roether, A. R. Boccaccini, Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD), J. Nanopart. Res. 10 (2008) 99-105.

DOI: 10.1007/s11051-007-9230-x

[16] A. R. Boccaccini, I. Zhitomirsky, Curr. Opin. Application of electrophoretic and electrolytic deposition techniques in ceramics processing, Curr. Opin. Solid State Mater. 6 (2002) 251-260.

DOI: 10.1016/s1359-0286(02)00080-3

[17] L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci. 52 (2007) 1-61.

[18] I. Corni, M. P. Ryan, A. R. Boccaccini, Electrophoretic deposition: From traditional ceramics to nanotechnology, J. Eur. Ceram. Soc. 28 (2008) 1353-1367.

DOI: 10.1016/j.jeurceramsoc.2007.12.011

[19] J. Antoy, F. J. Antony, Teaching the Taguchi method to industrial engineers, Work Study 50 (2001) 141-149.

[20] R. K. Roy, A Primer on The Taguchi Method, Society of Manufacturing Engineers, Dearborn Michigan, 1990 pp.1-124.

[21] F. Pishbin, A. Simchi, M. P. Ryan, A. R. Boccaccini, A study of the electrophoretic deposition of Bioglass® suspensions using the Taguchi experimental design approach, J. Eur. Ceram. Soc. 30 (2010) 2963-2970.

DOI: 10.1016/j.jeurceramsoc.2010.03.004

[22] X. Pang and I. Zhitomirsky, Electrophoretic deposition of composite hydroxyapatite-chitosan coatings, Matter. Charact. 58 (2007) 339-348.

DOI: 10.1016/j.matchar.2006.05.011

[23] F. Pishbin, A. Simchi, M. P. Ryan, A. R. Boccaccini, Electrophoretic deposition of chitosan/45S5 Bioglass® composite coatings for orthopaedic applications, Surf. Coat. Technol. 205 (2011) 5260-5268.

DOI: 10.1016/j.surfcoat.2011.05.026

[24] F. Sun, X. Pang, I. Zhitomirsky, Electrophoretic deposition of composite hydroxyapatite-chitosan-heparin coatings, J. Mater. Process. Technol. 209 (2009) 1597-1606.

DOI: 10.1016/j.jmatprotec.2008.04.007

[25] L. Cordero-Arias, S. Cabanas-Polo, H. Gao, J. Gilabert, E. Sanchez, J. A. Roether, D. W. Schubert, S. Virtanen, A. R. Boccaccini, Electrophoretic deposition of nanostructured TiO2/chitosan composite coatings on stainless steel, RCS Advances. 3 (2013).

DOI: 10.1039/c3ra40535d

[26] P. Yuan, P. D. Southon, Z. Liu, M. E. R. Green, J. M. Hook, S. J. Antill and C. J. Kepert, Functionalization of halloysite clay nanotubes by grafting with γ-Aminopropyltriethoxysilane, J. Phys. Chem. C 112 (2008) 15742-1751.

DOI: 10.1021/jp805657t

[27] A. Simchi, F. Pishbin, A. R. Boccaccini, Electrophoretic deposition of chitosan, Mat. Lett. 63 (2009) 2253-2256.

DOI: 10.1016/j.matlet.2009.07.046

[28] N. Raddaha, L. Cordero-Arias, S. Cabanas-Polo, S. Virtanen, J. A. Roether, A. R. Boccaccini, Electrophoretic deposition of chitosan/h-BN and chitosan/h-BN/TiO2 composite coatings on stainless steel (316L) substrates, Materials 7 (2014) 1814-1829.

DOI: 10.3390/ma7031814

Fetching data from Crossref.
This may take some time to load.