Effect of β-Si3N4 Powder on Thermal Conductivity of Silicon Nitride Ceramics

Abstract:

Article Preview

To investigate the influence of β-Si3N4 powder on thermal conductivity of silicon nitride, coarse, fine β-Si3N4 powder and various β-Si3N4/α-Si3N4 ratios of starting powders were adopted to fabricate ceramics by spark plasma sintering at 1600°Cand subsequent high-temperature heat treatment at 1900°C with the sintering additives of Y2O3 and MgO. It is found that with more fine β-Si3N4 powder in the starting powder, β-Si3N4 grains exhibit high thermal conductivity, which is partly resulted from the compaction of β-Si3N4 grains.

Info:

Periodical:

Edited by:

Hong Lin and Jianghong Gong

Pages:

11-16

Citation:

X. L. Liu et al., "Effect of β-Si3N4 Powder on Thermal Conductivity of Silicon Nitride Ceramics", Key Engineering Materials, Vol. 655, pp. 11-16, 2015

Online since:

July 2015

Export:

Price:

$41.00

* - Corresponding Author

[1] F.L. Riley, Silicon nitride and related materials, J. Am. Ceram. Soc. 83(2000) 245-265.

[2] J.S. Haggerty, A. Lightfoot. Opportunities for Enhancing the Thermal Conductivities of SiC and Si3N4 Ceramics through Improved Processing, Ceram. Eng. Sci. Proc. 16 (1995) 475-487.

DOI: https://doi.org/10.1002/9780470314715.ch52

[3] G. Ziegler, D. Hasselman, Effect of phase composition and microstructure on the thermal diffusivity of silicon nitride, J. Mater. Sci. 16(1981) 495-503.

DOI: https://doi.org/10.1007/bf00738642

[4] M. Kitayama, K. Hirao, S. Kanzaki, Effect of rare earth oxide additives on the phase transformation rates of Si3N4, J. Am. Ceram. Soc. 89(2006) 2612-2618.

DOI: https://doi.org/10.1111/j.1551-2916.2006.01106.x

[5] X. Zhu, Y. Zhou, K. Hirao, Effect of Sintering Additive Composition on the Processing and Thermal Conductivity of Sintered Reaction-Bonded Si3N4, J. Am. Ceram. Soc. 87(2004) 1398-1400.

DOI: https://doi.org/10.1111/j.1151-2916.2004.tb07747.x

[6] M. Kitayama, K. Hirao, M. Toriyama, S. Kanzaki, Thermal Conductivity of b-Si3N4: I, Effects of Various Microstructural Factors, J. Am. Ceram. Soc. 82(1999) 3105-3112.

DOI: https://doi.org/10.1111/j.1151-2916.1999.tb02209.x

[7] M. Kitayama, K. Hirao, A. Tsuge, K. Watari, M. Toriyama, S. Kanzaki, Thermal Conductivity of β-Si3N4: II, Effect of Lattice Oxygen, J. Am. Ceram. Soc. 83(2000) 1985-(1992).

DOI: https://doi.org/10.1111/j.1151-2916.2000.tb01501.x

[8] M. Kitayama, K. Hirao, K. Watari, et al., Thermal Conductivity of β-Si3N4: III, Effect of Rare-Earth (RE= La, Nd, Gd, Y, Yb, and Sc) Oxide Additives, J. Am. Ceram. Soc. 84(2001) 353-358.

DOI: https://doi.org/10.1111/j.1151-2916.2001.tb00662.x

[9] D.D. Lee, S.J.L. Kang, G. Petzow, D.N. Yoon, Effect of α to β (β') phase transition on the sintering of silicon nitride ceramics, J. Am. Ceram. Soc. 73(1990) 767-769.

[10] X. Zhu, Y. Zhou, K. Hirao, Z. Lenčéš, Processing and Thermal Conductivity of Sintered Reactio- Bonded Silicon Nitride. I: Effect of Si Powder Characteristics, J. Am. Ceram. Soc. 89 (2006) 3331-3339.

DOI: https://doi.org/10.1111/j.1551-2916.2006.01195.x

[11] H. Hayashi, K. Hirao, M. Toriyama, et al., MgSiN2 Addition as a Means of Increasing the Thermal Conductivity of β-Silicon Nitride, J. Am. Ceram. Soc. 84(2001) 3060-3062.

DOI: https://doi.org/10.1111/j.1151-2916.2001.tb01141.x

[12] H. Yokota, M. Ibukiyama, Effect of the addition of β-Si3N4 nuclei on the thermal conductivity of β-Si3N4 ceramics, J. Eur. Ceram. Soc. 23(2003) 1183-1191.

DOI: https://doi.org/10.1016/s0955-2219(02)00292-3

[13] Y. Zhou, H. Hyuga, D. Kusano, Y.I. Yoshizawa, K. Hirao, A tough silicon nitride ceramic with high thermal conductivity, Adv. Mater. 23(2011) 4563-4567.

DOI: https://doi.org/10.1002/adma.201102462

[14] M. Belmonte, J. González-Julián, P. Miranzo, M.I. Osendi, Spark plasma sintering: A powerful tool to develop new silicon nitride-based materials, J. Eur. Ceram. Soc. 30(2010) 2937-2946.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2010.01.025

[15] Y.B. Lin, X.S. Ning, H.P. Zhou, K.X. Chen, R. Peng, W. Xu, Study on the thermal conductivity of silicon nitride ceramics with magnesia and yttria as sintering additives, Mater. Lett. 57(2002) 15-19.

DOI: https://doi.org/10.1016/s0167-577x(02)00690-0

[16] X.S. Ning, X. Lu, W. Xu, et al., Effect of Heat-Treatment on Microstructure and Thermal Conductivity of Spark-Plasma-Sintered Silicon Nitride Ceramics, J. Ceram. Soc. Jpn. 112(2004) S415-S417.

[17] B. Bing, T. Fu, X.S. Ning, Thermal Conductivity and Mechanical Property of Si3N4 Ceramics Sintered with CeF3/LaF3 Additives, Advanced Materials Research. 105(2010) 171-174.

[18] G.H. Peng, M. Liang, Z.H. Liang, et al., Spark plasma sintered silicon nitride ceramics with high thermal conductivity using MgSiN2 as additives, J. Am. Ceram. Soc. 92(2009) 2122-2124.

DOI: https://doi.org/10.1111/j.1551-2916.2009.03139.x

[19] T. Nishimura, M. Mitomo, H. Hirotsuru, M. Kawahara, Fabrication of silicon nitride nano-ceramics by spark plasma sintering, J. Mater. Sci. Lett. 14(1995) 1046-1047.

DOI: https://doi.org/10.1007/bf00258160

[20] X. Xu, L. Huang, X. Liu, X. Fu, Effects of α/β ratio in starting powder on microstructure and mechanical properties of silicon nitride ceramics, Ceram. Int. 28(2002) 279-281.

DOI: https://doi.org/10.1016/s0272-8842(01)00091-8

[21] Wiener O. Lamellare doppelbrechung[J]. Phys. Z, 1904, 5: 332-338.

[22] G.T. Tsao, Thermal conductivity of two-phase materials, Industrial & Engineering Chemistry. 53(1961) 395-397.