Study of Waste from Two-Phase Olive Oil Extraction as an Additive in Ceramic Material


Article Preview

The properties of ceramic materials are intimately related to a variety of factors, among them shaping procedure and sintering time. These factors condition, the microstructure and properties of the materials developed. Our study has formed materials from clays commonly used in the area of Bailén (Jaén) and wet pomace proceeding from the extraction of olive oil. The materials were shaped through extrusion. In this study, raw materials have been characterized and studied interesting properties of sintered materials, such as compressive strength, water absorption, open porosity or bulk density. The study concluded that the addition of wet pomace from olive oil industry into traditional brick entails a saving of raw materials and reducing the environmental impact generated by their manufacture. The best results are obtained for the samples with waste content of 3 wt %.



Edited by:

Carmen Martínez García, Salvador Bueno and Michele Dondi




M.T. Cotes Palomino et al., "Study of Waste from Two-Phase Olive Oil Extraction as an Additive in Ceramic Material", Key Engineering Materials, Vol. 663, pp. 86-93, 2016

Online since:

September 2015




[1] Consejo oleícola Internacional (2014). http: /www. internationaloliveoil. org/estaticos/view/131-world-olive-oil-figures).

[2] Junta de Andalucía http: /www. juntadeandalucia. es/agriculturaypesca/observatorio/servlet/FrontController?action=Subsector&table=3940&ec=subsector&subsector=33.

[3] ESYRCE Ministerio de Agricultura, Alimentación y Medio Ambiente. Encuesta sobre superficies y rendimientos de cultivos. Análisis de las plantaciones de olivar en España (2012).

[4] Elaboración del aceite de oliva de calidad obtenido por el sistema de tres fases 1996 (CAPYA Junta de Andalucia, 27).

DOI: 10.3989/gya.1995.v46.i4-5.942

[5] J.A. Alburquerque, J. Gonzálvez, D. García, J. Cegarra (2004). Agrochemical characterization of 'alperujo', a solid by-product of the two-phase centrifugation method for olive oil extraction, Bioresource Technol. 91, 195–200.

DOI: 10.1016/s0960-8524(03)00177-9

[6] R. Borja, F. Raposo, B. Rincón (2006). Treatment technologies of liquid and solidwastes from two-phase olive oil mills, Grasas y Aceites 57, 32–46.

DOI: 10.3989/gya.2006.v57.i1.20

[7] A. Nastri, N.A. Ramieri, R. Abdayem, R. Piccaglia, C. Marzadori, C. Ciavatta (2006). Olive pulp and its effluents suitability for soil amendment, J. Hazard. Mater. 138, 211–217.

DOI: 10.1016/j.jhazmat.2006.05.108

[8] M.L. Cayuela, P.D. Millner, S.L.F. Meyer, A. Roig (2008). Potential of olive mil wastes as biobased pesticides against weeds, fungi and nematodes, Sci. Total Environ. 399, 11–1.

DOI: 10.1016/j.scitotenv.2008.03.031

[9] A. C. Caputo, F. Scacchia, P. M. Pelagagg. (2003). Disposal of by-products in olive oil industry: waste-to-energy solutions, Appl. Therm. Eng. 23, 197–214.

DOI: 10.1016/s1359-4311(02)00173-4

[10] A.R. Tekin, A.C. Dalgic (2000). Biogas production from olive pomace, Resour Conserv. Recy. 30, 301–313.

DOI: 10.1016/s0921-3449(00)00067-7

[11] M.L. Cayuela, M.P. Bernal, A. Roig (2004). Composting olive mill wastes and sheep manure for orchard use, Compost Science and Utilization 12 (2), 130–136.

DOI: 10.1080/1065657x.2004.10702171

[12] M.L. Cayuela, M.A. Sánchez-Monedero, A. Roig (2010). Two-phase olive mill waste composting: enhancement of the composting rate and compost quality by grape stalks addition, Biodegradation 21, 465–473.

DOI: 10.1007/s10532-009-9316-5

[13] L. Baeta-Hall, M. C. Sàágua, M.L. Bartolomeu, A.M. Anselmo, M.F. Rosa. (2005). Biodegradation of olive oil husks in composting aerated piles, Bioresour Technol. 96 (1), 69–78.

[14] S.M. Cardoso, M.A. Coimbra, J.A. Lopes da Silva (2003). Calcium mediated gelation of an olive pomace pectic extract, Carbohydr. Polym. 52, 125–133.

DOI: 10.1016/s0144-8617(02)00299-0

[15] H.K. Obied, M.S. Allen, D. R Bedgood, P.D. Prenzler, K. Robards,R. Stockmann (2005). Bioactivity and analysis of biophenols recovered from olive mill waste, J. Agric. Food Chem. 53, 823–837.

DOI: 10.1021/jf048569x

[16] S.M. Naga, A. El-Maghraby (2002). Industrial wastes as raw materials for tile making, Key Eng. Mater. 206, 1787–90.

DOI: 10.4028/

[17] D. Eliche-Quesada, C. Martínez-García, M.L. Martínez-Cartas, M.T. Cotes-Palomino, L. Pérez-Villarejo, N. Cruz-Pérez (2011). The use of different forms of waste in the manufacture of ceramic bricks, Appl. Clay Sci. 52, 270-276.

DOI: 10.1016/j.clay.2011.03.003

[18] M. Devant, J.A. Cusidó, C. Soriano (2011). Custom formulation of red ceramics with clay, sewage sludge and forest waste, Appl. Clay Sci. 53, 669-675.

DOI: 10.1016/j.clay.2011.06.002

[19] E. Furlani, G. Tonello, S. Maschio, E. Aneggi, D. Minichelli, S. Brucknera, E. Lucchini (2011).

[20] J.A. Cusidó, L.V. Cremades (2012). Environmental effect of using clay bricks produced with sewage sludge: Leachability and toxicity studies, Waste Managem. 32, 1202-1208.

DOI: 10.1016/j.wasman.2011.12.024

[21] J.A. De la Casa, I. Romero, J. Jiménez, E. Castro (2012). Fired clay masonry units production incorporating two-phase olive mill waste (alperujo), Ceram. Inter. 38, 5027-5037.

DOI: 10.1016/j.ceramint.2012.03.003

[22] M.D. La Rubia-García, A. Yebra-Rodriguez, D. Eliche-Quesada, F.A. Corpas- Iglesias, A. López-Galindo (2012). Assessment of olive mill solid residue (pomace) as an additive in lightweight brick production, Const. Build. Mater. 36, 495-500.

DOI: 10.1016/j.conbuildmat.2012.06.009

[23] L. Barbieri, F. Andreola, I. Lancellotti, R. Taurino (2013). Management of agricultural biomass wastes: preliminary study on characterization and valorization in clay matrix bricks, Waste Managem. 33, 2307-(2015).

DOI: 10.1016/j.wasman.2013.03.014

[24] D. Eliche Quesada, F.A. Corpas-Iglesias (2014). Utilisation of spent filtration earth or spent bleaching earth from the oil refinery industry in clay products, Ceram. Int. 40, 16677-16687.

DOI: 10.1016/j.ceramint.2014.08.030

[25] R. Borja, F. Raposo, B. Rincón (2006). Treatment technologies of liquid and solid wastes from two-phase olive oil mills, Grasas y Aceites 57, 32–46.

DOI: 10.3989/gya.2006.v57.i1.20

[26] UNE 32006: 1995. Solid mineral fuels. Determination of gross calorific value by automatic calorimeter.

[27] NPR CENT/TS 15359: 2006. Solid recovered fuels-specifications and classes.

[28] ASTM 1994a. ASTM C373. Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products. American Society for Testing and Materials.

DOI: 10.1520/c0373

[29] UNE EN 772-1: 2002. Methods of Test for Masonry Units-Part 1: Determination of Compressive Strength.

[30] D. Eliche-Quesada, F.J. Iglesias-Godino, L. Perez-Villarejo, F.A. Corpas-Iglesias (2014).

[31] C. Martínez-García, T. Cotes-Palomino, F.J. Iglesias-Godino, F.A. Corpas-Iglesias (2014). Porosity of expanded clay manufactured with addition of sludge from the brewing industry, Int. J. Energy Environ. Eng. 5, 341-347.

DOI: 10.1007/s40095-014-0112-6

Fetching data from Crossref.
This may take some time to load.