Environmental Characterization of Lake Ecosystems Located in Serbo Macedonian Massif (FYRM)


Article Preview

This chapter represents the mineralogical, geochemical and isotopic characteristics of recent lacustrine sediments, shells of the Anodonta cygnea and fish species (Rutilus rutilus dojranensis) from the Lake Dojran (FY Republic of Macedonia, southern part of the Serbo-Macedonian Massif (SMM)) which provide indirect evidence regarding biomineralization and calcification processes as well as various geological problems. Environmental pollution can seriously contribute to different biological processes concerning the condition of physiological secretion of carbonate material into the shells. For comparison, sediments and fish species V. melanops from the Lake Kalimanci, located in northern part of the SMM, were also implicated into the study. X-ray powder diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS) and C and O stable isotope analyses were performed, and thereupon enrichment factor (EF) values were calculated. The XRD results revealed close association of sediment mineralogy with the prevailing metamorphic, volcanic and igneous rocks of the region surrounding both lakes (Dojran and Kalimanci). According to the EF value results, surficial Lake Dojran sediments are little enriched with Co, Cr, Cu, Pb, and Zn, moderately enriched with Au, Ni and Sb, moderately severely enriched with Au, severely enriched with Sb and very severely enriched with As. This elemental enrichment originates from various geogenic (geological background and polymetallic mineralization) and anthropogenic (tourism, traffic, coatings, untreated wastewater discharge and agrochemicals) sources. Calculated EF revealed that surficial sediments from Lake Kalimanci are extremely severe enriched with Pb, Zn, and Cd, meanwhile As and Cu shows very severe enrichment. Comparing to Lake Dojran, calculated EF is much higher in Lake Kalimanci than in Dojran. Stable isotope signature results showed that Lake Dojran sediments were strongly influenced by evaporation effect. Their δ18O values range from -5.60 to +1.49 ‰ and the δ13CVPDB composition range from -6.45 to -1.65 ‰. Shells Anodonta cygnea are mainly composed from mineral aragonite and their δ18O values varies between 0.43 ‰ and +1.94 ‰, and δ13CVPDB between -2.48 to -1.72 ‰. δ18O signature in shells might be explained by precipitation of the carbonate from isotopically heavier oxygen lake water. The unussualy heavy skeletal oxygen suggested calcification at the elevated temperature and evaporation. Analyses also identified particularly high levels for Cr, Hg, Ni and Pb in fish (V. Melanops) and frog (R. Temporaria) samples from Lake Kalimanci with mean values [µgkg-1]: 1090 – 6.5, 339 – 117, 567 – 5100 and 1127 – 435, respectively. Meanwhile, the contents of Cr, Hg, Ni and Pb in fish samples (R. rutilus dojranensis) from Lake Dojran are a bit lower [µgkg-1]: 2320, 1690, 700 and 50.



Edited by:

Frédéric Marin, Franz Brümmer, Antonio Checa, Gabriel Furtos, Isidoro Giorgio Lesci and Lidija Šiller




T. Dolenec et al., "Environmental Characterization of Lake Ecosystems Located in Serbo Macedonian Massif (FYRM)", Key Engineering Materials, Vol. 672, pp. 295-311, 2015

Online since:

January 2016




* - Corresponding Author

[1] A. O. Oyewale, I. Musa, Pollution assessment of the lower basin of Lakes Kainji/Jebba, Nigeria: heavy metal status of the waters, sediments and fishes, Environ. Geochem. Health 28 (2006) 273-281.

DOI: https://doi.org/10.1007/s10653-006-9043-3

[2] M. H. Bibi, F. Ahmed, H. Ishiga, Assessment of metal concentrations in lake sediments of southwest Japan based on sediment quality guidelines, Environ. Geol. 52 (2007) 625-639.

DOI: https://doi.org/10.1007/s00254-006-0492-x

[3] S. Kumar Das, J. Routh, A.N. Roychoudhury, J. Val Klump, Major and trace element geochemistry in Zeekoevlei, South Africa: A lacustrine record of present and past processes, Appl. Geochem. 23 (2008) 625-639.

DOI: https://doi.org/10.1016/j.apgeochem.2008.02.011

[4] E. Maltby, Soil and wetland functions, in: Gerakis P. A. (Ed. ), Conservation and Management of Greek Wetlands. (1992) The IUCN Wetlands Programme, p.9–60.

[5] K.P. Singh, D. Mohan, V.K. Singh, A. Malik, Studies on distribution and fractionation of heavy metals Gomti river sediments – a tributary of the Ganges, J. Hydrol. 312 (2005) 14-27.

DOI: https://doi.org/10.1016/j.jhydrol.2005.01.021

[6] H. Ghrefat, N. Yusuf, Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan, Chemosphere 65 (2006) 2114-2121.

DOI: https://doi.org/10.1016/j.chemosphere.2006.06.043

[7] A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and Plants. 3rd ed. CRC Press, Boca Raton, FL (2001).

DOI: https://doi.org/10.1201/9781420039900

[8] A. Khaled, A. El Nemr, A. El Sikaily, An assessment of heavy-metal contamination in surface sediments of the Suez Gulf using geoaccumulation indexes and statistical analysis, Chem. Ecol. 22(3) (2006) 239-252.

DOI: https://doi.org/10.1080/02757540600658765

[9] A. Demirak, F. Yilmaz, Levent, A. Tuna, N. Ozdemir, Heavy metals in water, sediment and tissues of Leuiscus cephalus from a stream in southwestern Turkey, Chemosphere 63 (2006) 1451-1458.

DOI: https://doi.org/10.1016/j.chemosphere.2005.09.033

[10] V.U. Devi, Bioaccumulation and metabolic effects of cadmium on marine fouling dressinid bivalve, Mytilopsis sallei (Recluz), Arch. Environ. Contam. Toxicol. 31 (1996) 47-53.

DOI: https://doi.org/10.1007/bf00203906

[11] G. Moura, L. Vilarinho, A.C. Santos, J. Machado, Organic compounds in the extrapallial fluid and haemolymph of Anodonta Cygnea (L. ) with emphasis on the seasonal biomineralization process, Comp. Biochem. Physiol. Part B. 125 (2000) 293-306.

DOI: https://doi.org/10.1016/s0305-0491(99)00192-3

[12] S. Gintenreiter, J. Ortel, H. Nopp, Effects of different dietary levels of cadmium, lead, copper and zinc on the vitality of the forest pest insect Lymantria dispar L. (Lymantriidae, Lepid), Arch. Environ. Cont. Toxicol. 25 (1993) 62-66.

DOI: https://doi.org/10.1007/bf00230712

[13] J.G. Arnason, B.A. Fletcher, A 40+ year record of Cd, Hg, Pb and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA, Environ. Pollut. 123 (2003) 383-391.

DOI: https://doi.org/10.1016/s0269-7491(03)00015-0

[14] K. Aysegül, N. Balkis, M. Erkan, H. Balkais, A. Aksu, M.S. Ersan, Total metal levels in crayfishes Astacus leptodactylus (Escholtz, 1823), and surface sediments in Lake Terkos, Turkey, Environ. Monitor. Assess. 169 (2010) 358-395.

DOI: https://doi.org/10.1007/s10661-009-1181-5

[15] C.X. Fan, Y.X. Zhu, Z.J. Ji, L. Zhang, L.Y. Yang,. Characteristics of the pollution of heavy metals the sediments of Yilihe River, Taihu Basin, J. Lake Sci. 14(3) (2002) 235-241.

DOI: https://doi.org/10.18307/2002.0307

[16] P. Gramatica, F. Battaini, E. Giani, E. Papa, R.J.A. Jones, D. Preatoni, R.M. Cenci, Analysis of mosses and soils for quantifying heavy metal concentrations in Sicily: A multivariate and spatial analytical approach, Environ. Sci. Pollut. Res. 1 (2006).

DOI: https://doi.org/10.1065/espr2006.01.006

[17] W. Tylmann, K. Lysek, M. Kinder, J. Pempkowiak, Regional Pattern of Heavy Metal Content in Lake Sediments in Northern Poland, Water Air Soil Pollut. 216 (2011) 217-228.

DOI: https://doi.org/10.1007/s11270-010-0529-3

[18] R. Stojanov, E. Micevski, Geologija na Dojransko Ezero I negovata okolina, Prilozi, 10(1-2) (1989) 35-37.

[19] R. Stojanov, J. Obradović, S. Djurić, Dojran Lake Dark Mud. Simposium – Annual Meeting (Dojran-Štip), Faculty of mining and geology, (1997) pp.221-225.

[20] H. Ehrlich, Chitin and collagen as universal and alternative templates in biomineralization, Int. Geol. Rev. 52 (2010) 661-699.

[21] F. Jabeen, A.S. Chaudhry, Environmental impacts of anthropogenic activities on the mineral uptake in Oreochromis mossambicus from Indus River in Pakistan, Environ. Monit. Assess. 166 (2009) 641-651.

DOI: https://doi.org/10.1007/s10661-009-1029-z

[22] U.S. EPA-Environmental Protection Agency. Guidelines for Ecological Risk Assessment, 188 pp (1998).

[23] A. L. W. Kemp, R. L. Thomas, C. I. Dell, J.M. Jaquet, Cultural impact on the geochemistry of sediments in Lake Erie, Can. J. Fish. Aquat. Sci. 33 (1976) 440-85.

[24] P.C. Van Metre, E. Callender, Water quality trends in white rock creek basin from 1912-1994 identified using sediment cores from white rock lake reservoir, Dallas, Texas, J. Paleolimnol. 17 (1997) 239-249.

[25] C.H. Chen, C.M. Kao, C.F. Chen, C. D. Dong, Distribution and accumulation of heavy metals the sediments of Kaohsiung Harbor, Taiwan, Chemosphere 66(8) (2007) 1431-1440.

DOI: https://doi.org/10.1016/j.chemosphere.2006.09.030

[26] S.R. Taylor, S. M. McLennan, The geochemical evaluation of the continental crust, Rev. Geophys. 33 (1995) 241-265.

[27] J. Zhang, C.L. Liu, Riverine composition and estuarine geochemistry of particulate metals in China - weathering features, anthropogenic impact and chemical fluxes, Est. Coast. Shelf Sci. 54 (2002) 1051-1070.

DOI: https://doi.org/10.1006/ecss.2001.0879

[28] P. Szefer, G.P. Glasby, K. Szefer, J. Pempkowiak, R. Kaliszan, Heavy-metal pollution in superficial sediments from the southern Baltic Sea of Poland, J. Environ. Sci. Health 31A (1996), 2723-2754.

DOI: https://doi.org/10.1080/10934529609376520

[29] B.T. Hart, Uptake of trace metals by sediments and suspended particulates: A review, Hydrobiologia 91 (1982) 299-313.

DOI: https://doi.org/10.1007/bf02391947

[30] W. Maher, G.E. Batkey, I. Lawrence, Assessing the health of sediment ecosystems: Use of chemical measurements, Freshw. Biol. 41 (1999) 361-372.

[31] U. Förstner, G. T. W. Wittmann, Metal Pollution in the Aquatic Environment. Springer, Berlin, Heidelberg, New York (1981).

[32] S. Olivares-Rieumont, D. Rosa, L. Lima, D.W. Graham, K.D. Alessandro, J. Borroto, F. Martínez, J. Sánchez, Assessment of heavy metal levels in Almendares River sediments-Havana City, Cuba, Water Resour. 39 (2005) 3945-3953.

DOI: https://doi.org/10.1016/j.watres.2005.07.011

[33] J. Hoefs, Stable Isotope Geochemistry. Berlin, Springer Verlag, (1997) 240 pp.

[34] N. Ogrinc, S. Lojen, J. Faganeli, The sources of dissolved inorganic carbon in pore waters of lacustrine sediment, Water Air Soil Pollut. 99 (1997) 333-341.

DOI: https://doi.org/10.1007/bf02406873

[35] Wedepohl. Handbook of geochemistry. Berlin, Springer, Verlag (1978) pp.1-5.