HVPE Growth of GaN Layers on Cleaved β-Ga2O3 Substrates

Abstract:

Article Preview

GaN epitaxial layers were successfully grown by hydride vapour phase epitaxy (HVPE) on β-Ga2O3 substrates produced by cleaving. The initial stages of GaN epitaxial growth on β-Ga2O3 were studied by scanning electron microscopy (SEM) and x-ray diffraction analysis (XRD). The nucleation and the transition from the nucleation layer to a continuous GaN film were studied. It was found that the growth starts with formation of small crystallites on the substrate surface. As the growth continues, crystallites transform into pyramidal islands which increase in size and merge together. It was found that the structural quality of the GaN layers rapidly improves with increasing thickness. The full width at half maximum of x-ray ω rocking curves for (0002) peak decreased from 1370 to 540 arcsec as the deposition time was increased from 30 to 120 sec. This corresponds to the variation of the nominal layer thickness from 250 nm to 1000 nm.

Info:

Periodical:

Edited by:

Irina Hussainova and Renno Veinthal

Pages:

302-307

DOI:

10.4028/www.scientific.net/KEM.674.302

Citation:

V.I. Nikolaev et al., "HVPE Growth of GaN Layers on Cleaved β-Ga2O3 Substrates", Key Engineering Materials, Vol. 674, pp. 302-307, 2016

Online since:

January 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] T. Oshima, T. Okuno, S. Fujita, Ga2O3 Thin Film Growth on c -Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors, Jpn. J. Appl. Phys. 46 (2007) 7217.

DOI: 10.1143/jjap.46.7217

[2] K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, Ga2O3 Schottky Barrier Diodes Fabricated by Using Single-Crystal β-Ga2O3 (010) Substrates, IEEE Electron Device Lett. 34 (2013) 493–495.

DOI: 10.1109/led.2013.2244057

[3] K. Matsuzaki, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, et al., Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor, Thin Solid Films. 496 (2006) 37–41.

DOI: 10.1016/j.tsf.2005.08.187

[4] W.S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. (Grace) Xing, et al., High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes, Appl. Phys. Lett. 104 (2014) 203111.

DOI: 10.1063/1.4879800

[5] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates, Appl. Phys. Lett. 100 (2012) 013504.

DOI: 10.1063/1.3674287

[6] M. Fleischer, Advances in application potential of adsorptive-type solid state gas sensors: high-temperature semiconducting oxides and ambient temperature GasFET devices, Meas. Sci. Technol. 19 (2008) 042001.

DOI: 10.1088/0957-0233/19/4/042001

[7] P. Wellenius, A. Suresh, J. V. Foreman, H.O. Everitt, J.F. Muth, A visible transparent electroluminescent europium doped gallium oxide device, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 146 (2008) 252–255.

DOI: 10.1016/j.mseb.2007.07.060

[8] E.G. Villora, K. Shimamura, Y. Yoshikawa, T. Ujiie, K. Aoki, Electrical conductivity and carrier concentration control in β-Ga[sub 2]O[sub 3] by Si doping, Appl. Phys. Lett. 92 (2008) 202120.

DOI: 10.1063/1.2919728

[9] H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, Y. Yaguchi, Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method, Jpn. J. Appl. Phys. 47 (2008) 8506–8509.

DOI: 10.1143/jjap.47.8506

[10] E.G. Villora, K. Shimamura, K. Kitamura, K. Aoki, T. Ujiie, Epitaxial relationship between wurtzite GaN and β-Ga[sub 2]O[sub 3], Appl. Phys. Lett. 90 (2007) 234102.

DOI: 10.1063/1.2745645

[11] M.M. Muhammed, M. Peres, Y. Yamashita, Y. Morishima, S. Sato, N. Franco, et al., High optical and structural quality of GaN epilayers grown on ( 2¯01) β-Ga2O3, Appl. Phys. Lett. 105 (2014) 042112.

DOI: 10.1063/1.4891761

[12] K. Shimamura, E.G. Víllora, K. Domen, K. Yui, K. Aoki, N. Ichinose, Epitaxial Growth of GaN on (1 0 0) β-Ga 2 O 3 Substrates by Metalorganic Vapor Phase Epitaxy, Jpn. J. Appl. Phys. 44 (2005) L7–L8.

DOI: 10.1143/jjap.44.l7

[13] S. Ito, K. Takeda, K. Nagata, H. Aoshima, K. Takehara, M. Iwaya, et al., Growth of GaN and AlGaN on (100) β-Ga2O3 substrates, Phys. Status Solidi. 9 (2012) 519–522.

DOI: 10.1002/pssc.201100499

[14] H.J. Lee, T.I. Shin, D.H. Yoon, Influence of NH3 gas for GaN epilayer on β-Ga2O3 substrate by nitridation, Surf. Coatings Technol. 202 (2008) 5497–5500.

DOI: 10.1016/j.surfcoat.2008.06.103

[15] K. Kachel, M. Korytov, D. Gogova, Z. Galazka, M. Albrecht, R. Zwierz, et al., A new approach to free-standing GaN using β-Ga2O3 as a substrate, CrystEngComm. 14 (2012) 8536.

DOI: 10.1039/c2ce25976a

[16] X. Zi-Li, Z. Rong, X. Chang-Tai, Demonstration of GaN/InGaN Light Emitting Diodes on (100) β-Ga2O3 Substrates by Metalorganic Chemical Vapour Deposition, Chinese Phys. …. 2185 (2008).

DOI: 10.1088/0256-307x/25/6/071

[17] V.N. Maslov, V.M. Krymov, M.N. Blashenkov, a. a. Golovatenko, V.I. Nikolaev, β-Ga2O3 crystal growing from its own melt, Tech. Phys. Lett. 40 (2014) 303–305.

DOI: 10.1134/s1063785014040075

[18] V.I. Nikolaev, A.I. Pechnikov, V.N. Maslov, A.A. Golovatenko, V.M. Krymov, S.I. Stepanov, et al., GaN GROWTH ON β -Ga 2 O 3 SUBSTRATES BY HVPE, 22 (2015) 59–63.

In order to see related information, you need to Login.