Electrochemical Dispersion Method for TiO2 Nanoparticles Preparation


Article Preview

Electrochemical dispersion method for producing of TiO2 nanoparticles in anatase form has been proposed. It was found that the ratio between the current density of the anodic and cathodic pulses has an impact on the specific surface area (90–155 m2 g-1) and particles size (≈10-14 nm) of prepared TiO2 powders was but doesn’t impact on the products composition. The electrolyte concentration doesn’t impact on the rate of Ti electrode dispersion as well as TiO2 powders morphology.



Edited by:

Prof. Irina Kurzina and Dr. Anna Godymchuk




A. Kuriganova et al., "Electrochemical Dispersion Method for TiO2 Nanoparticles Preparation", Key Engineering Materials, Vol. 683, pp. 419-423, 2016

Online since:

February 2016




* - Corresponding Author

[1] H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO 2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Res. 79 (2015) 128-146.

DOI: https://doi.org/10.1016/j.watres.2015.04.038

[2] E. Zalnezhad, A.M.S. Hamouda, G. Faraji, S. Shamshirband, TiO2 nanotube coating on stainless steel 304 for biomedical applications, Ceram. Int. 41 (2015) 2785-2793.

DOI: https://doi.org/10.1016/j.ceramint.2015.07.022

[3] MR Mahmoudian, WJ Basirun, Y Alias, Synthesis of polypyrrole/Ni-doped TiO2 nanocomposites (NCs) as a protective pigment in organic coating, Prog. Org. Coat. 71 (2011) 56-64.

DOI: https://doi.org/10.1016/j.porgcoat.2010.12.010

[4] E. Madej, F. La Mantia, B. Mei, S. Klink, M. Muhler, W. Schuhmann, E. Ventosa, Reliable benchmark material for anatase TiO2 in Li-ion batteries: On the role of dehydration of commercial TiO2 J. Power Sources. 227 (2014) 155-161.

DOI: https://doi.org/10.1016/j.jpowsour.2014.05.018

[5] Y. Zheng, H. Chen, Y. Dai, N. Zhang, W. Zhao, S. Wang, Y. Lou, Y. Li, Y. Sun, Preparation and characterization of Pt/TiO2 nanofibers catalysts for methanol electro-oxidation, Electrochim. Acta 178 (2015) 74-79.

DOI: https://doi.org/10.1016/j.electacta.2015.07.177

[6] A. Jaroenworaluck, D. Regonini, C. R. Bowen, R. Stevens, D. Allsopp, Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte, J. Mater. Sci. 42 (2007) 6729-6734.

DOI: https://doi.org/10.1007/s10853-006-1474-9

[7] Y. L. Pang, S. Lim, H. C. Ong, W. T. Chong, A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts, Appl. Catal. A. 481 (2014) 127-142.

DOI: https://doi.org/10.1016/j.apcata.2014.05.007

[8] J. Tian, Y. Leng, H. Cui, H. Liu, Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst, J. Hazard. Mater. 299 (2015) 165-173.

DOI: https://doi.org/10.1016/j.jhazmat.2015.06.019

[9] X. Huang, W. Zhang, Visible-light photocatalytic behavior of two different N-doped TiO2, Appl. Surf. Sci. 254 (2008) 4462-4466.

[10] J. Du, X. Gu, H. Guo, J. Liu, Q. Wu, J. Zou, Self-induced preparation of TiO2 nanowires by chemical vapor deposition, J. Cryst. Growth. 427 (2015) 54-59.

[11] I. Leontyev, A. Kuriganova, Y. Kudryavtsev, B. Dkhil, N. Smirnova, New life of a forgotten method: Electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells Appl. Catal. A. General 431-432 (2012) 120 - 125.

DOI: https://doi.org/10.1016/j.apcata.2012.04.025

[12] D. Leontyeva, I. Leontyev, M. Avramenko, Y. Yuzyuk, Y. Kukushkina, N. Smirnova, Electrochemical dispergation as a simple and effective technique toward preparation of NiO based nanocomposite for supercapacitor application, Electrochim. Acta. 114 (2013).

DOI: https://doi.org/10.1016/j.electacta.2013.10.031

[13] A. Kuriganova, N. Smirnova, Pt-SnOx/C composite material for electrocatalysis. Mendeleev Commun. 24 (2014) 351-353.

DOI: https://doi.org/10.1016/j.mencom.2014.11.013