Synthesis and Characterization of Transition Metal Complexes of 1,2-Bis(3,5-Dimethylpyrazol-1-yl)-1,2-Ethanediol


Article Preview

Copper (II), nickel (II) and vanadyl complexes of 1,2-bis (3,5-dimethylpyrazol-1-yl)-1,2-ethanediol were prepared by the reaction of transition metal salts (chloride, acetate, sulfate) with the ligand in ethanol solution. The composition of the complexes was confirmed by elemental analysis and molar conductivity measurements. The coordination modes of the ligand and counter-ions were established from IR spectra and DFT calculations.



Edited by:

Nikita Martyushev and Anna Bogdan




G. A. Anosova et al., "Synthesis and Characterization of Transition Metal Complexes of 1,2-Bis(3,5-Dimethylpyrazol-1-yl)-1,2-Ethanediol", Key Engineering Materials, Vol. 685, pp. 754-758, 2016

Online since:

February 2016




[1] C. Pettinari, R. Pettinari, Metal derivatives of poly(pyrazolyl)alkanes: II. Bis(pyrazolyl)alkanes and related systems, Coord. Chem. Rev. 249 (2005) 663-691.


[2] A. S. Potapov, G. A. Domina, T. V. Petrenko, A. I. Khlebnikov, Synthesis and crystal structure of discrete complexes and coordination polymers containing 1, 3-bis(pyrazol-1-yl)propane ligands, Polyhedron. 33 (2012) 150-157.


[3] A. S. Potapov, A. I. Khlebnikov, Synthesis of mixed-ligand copper(II) complexes containing bis(pyrazol-1-yl)methane ligands, Polyhedron. 25 (2006) 2683-2690.


[4] B. Machura, J. Palion, M. Penkala, T. Groń, H. Duda, R. Kruszynski, Thiocyanate manganese(II) and cobalt(II) complexes of bis(pyrazol-1-yl)methane and bis(3, 5-dimethylpyrazol-1-yl)methane – Syntheses, spectroscopic characterization, X-ray structure and magnetic properties, Polyhedron. 56 (2013).


[5] B. MacHura, A. Świtlicka, I. Nawrot, J. Mroziński, K. Michalik Cu(II), Cd(II) and Ni(II) azide complexes incorporating bis(3, 5-dimethylpyrazol-1-yl)methane - Synthesis, spectroscopic characterisation, X-ray studies and magnetic properties, Polyhedron. 30 (2011).


[6] B. MacHura, J. G. Małecki, A. Świtlicka, I. Nawrot, R. Kruszynski, Copper(II) complexes of bis(pyrazol-1-yl)methane - Synthesis, spectroscopic characterization, X-ray structure and DFT calculations, Polyhedron. 30 (2011) 864-872.


[7] B. Kozlevčar, P. Gamez, R. de Gelder, W.L. Driessen, J. Reedijk, Unprecedented Change of the Jahn−Teller Axis in a Centrosymmetric CuII Complex Induced by Lattice Water Molecules − Crystal and Molecular Structures of Bis[bis(3, 5-dimethylpyrazol-1-yl)acetato]copper(II) and Its Dihydrate, Eur. J. Inorg. Chem. (2003).


[8] R. -Y. Tan, H. -B. Song, L. -F. Tang, The modification of bis(pyrazol-1-yl)methanes by chalcogen (S and Se) and their related reactions with organotin chloride and M(CO)5THF (M = Mo and W), J. Organomet. Chem. 691 (2006) 5964-5969.


[9] G. F. Zhang, M. H. Yin, Y. L. Dou, Q. P. Zhou, J. B. She, Syntheses and characterization of nickel(II), zinc(II) and palladium(II) complexes derived from three pyrazole-based polydentate ligands, J. Coord. Chem. 61 (2008) 1272-1282.


[10] M. Pérez-Torralba, R. M. Claramunt, I. Alkorta, J. Elguero, Double addition of azoles to glyoxal: Characterization of the bis-adducts and theoretical study of their structure, Arkivoc. (2007) 55-66.


[11] W. J. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds, Coord. Chem. Rev. 7 (1971) 81-122.

[12] J. Masternak, B. Barszcz, W. Sawka-Dobrowolska, J. Wietrzyk, J. Jezierska, M. Milczarek, An efficient process to directly convert 1-hydroxymethyl-3, 5-dimethylpyrazole to Cd(II) complexes via C-N bond creation: cytotoxicity and factors controlling the structures, RSC Advances 4 (2014).


[13] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B. Applications in Coordination, Organometallic, and Bioinorganic Chemistry, Wiley-Interscience, Hoboken, (2009).

[14] L. D. Frederickson, D. M. Hausen, Infrared Spectra-Structure Correlation Study of Vanadium-Oxygen Compounds, Anal. Chem. 35 (1963) 818-827.


[15] F. Neese, The ORCA program system, Wiley Interdiscipl. Rev. Comp. Mol. Sci. 2 (2012). 73-78.

[16] J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B. 33 (1986) 8822-8824.


[17] F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys. 7 (2005) 3297-3305.


[18] F. Neese, T. Schwabe, S. Grimme, Analytic derivatives for perturbatively corrected double hybrid, density functionals: Theory, implementation, and applications, J. Chem. Phys. 126 (2007) 124115.


[19] A. M. Burow, M. Sierka, F. Mohamed, Resolution of identity approximation for the Coulomb term in molecular and periodic systems, J. Chem. Phys. 131 (2009) 214101.

[20] C. K. Skylaris, L. Gagliardi, N. C. Handy, A. G. Ioannou, S. Spencer, A. Willetts, On the resolution of identity Coulomb energy approximation in density functional theory, J. Mol. Struct. Theochem. 501 (2000) 229-239.


Fetching data from Crossref.
This may take some time to load.