Identification and Analysis of Residual Stresses in the Axisymmetric Workpiece Existing before and after Machining


Article Preview

Semi-manufactured parts dedicated for precise machining often have internal stresses which have remained after previous cutting and plastic processing. These stresses reside in a fixed state of balance over the entire volume of the workpiece. Removal of the machining allowance is associated with a change in the state of balance and deformation of the workpiece, which affect its dimensional and shape accuracy. The study, involving non-stress removal of precisely defined volume of the machining allowance and determination of the impact of this treatment on the deformation of the workpiece surface is presented. It is important from the point of view of dimensional tolerance of the axially symmetrical workpiece, finally processed by turning.



Edited by:

Pavel Kovač




T. Otko and W. Zębala, "Identification and Analysis of Residual Stresses in the Axisymmetric Workpiece Existing before and after Machining", Key Engineering Materials, Vol. 686, pp. 33-38, 2016

Online since:

February 2016




* - Corresponding Author

[1] W. Zębala, Tool stiffness influence on the chosen physical parameters of the milling process, Bulletin of the Polish Academy of Science -Technical Sciences 60, 3 (2012) 597-604, DOI: 10. 2478/v10175-012-0071-0.


[2] B. Mikó, J. Beňo, Effect of the Working Diameter to the Surface Quality in Free-form Surface Milling, Key Engineering Materials 581 (2014) 372-377.


[3] J. Kundrák, G. Varga, Possibility of reducing environmental load in hard machining. Key Engineering Materials 496 (2011) 205-210.


[4] AG. Mamalis, J. Kundrak J, M. Horvath, On a novel tool life relation for precision cutting tools, Journal of Manufacturing Science and Engineering - Transactions of the Asme 127, 2 (2005) 328-332.

[5] W. Hałas, Badanie wpływu naprężeń szczątkowych na dokładność wytwarzania wałów, PhD Thesis, Politechnika Lubelska, Lublin (2010).

[6] A. Georgiadis, M. Eggebrecht, T. Wagner, Strategies for Correcting the Workpiece Deformation during the Manufacturing at the Milling Process Key Engineering Materials 613, (2014) 446-452.


[7] W. Zębala, B. Słodki, G. Struzikiewicz, Productivity and reliability improvement in turning inconel 718 alloy - case study, Eksploatacja i Niezawodnosc-Maintenance and Reliability 15, 4 (2013) 421-426.

[8] H. Mughrabi, T. Ungár, H. Biermann, Internal Stresses and Microstructure in Plastically Deformed Metals and Alloys as Revealed by Asymmetric X-Ray Line Broadening, Key Engineering Materials 97-98, (1995) 437-460.


[9] W. J. Deng, W. Xia, Y. Li, Z. P. Wan, Y. Tang, Large Plastic Deformation and Ultra-Fine Grained Structures Generated by Machining, Key Engineering Materials 375-376 (2008) 21-25.


[10] I.A. Birger, M.L. Kozlov, Ostatocnye naprâženiâ: problemy i perspektivy, Materialy Vsesoûznogo simpoziuma Tehnologiceskie ostatocnye naprâženiâ, (1988) 388.

[11] D. Senczyk, Makronaprężenia. Poznań, Wydawnictwo Politechniki Poznańskiej (1997).

[12] D. Senczyk, Rentgenowskie pomiary tensora naprężenia, Poznań, Wydawnictwo Politechniki Poznańskiej (1998).

[13] D. Senczyk, S. Moryksiewicz, Naprężenia własne – pojęcia i klasyfikacja http: /www. badania-nieniszczace. info/Badania-Nieniszczace-Nr-01-03-2007/pdf/senczyk_naprezenia_wlasne. pdf.