Effect of Rolling Reduction on Microstructure and Mechanical Properties of Plain Low Carbon Steel


Article Preview

In the present study, the effect of cold-rolling for the amount of reduction in thickness ranging from 25% to 75% on microstructure and mechanical properties of plain low carbon steel processed from dual-phase ferrite-martensite starting microstructure was studied. As the cold-rolling, the microstructure elongated to rolling direction and more compressed with increasing the rolling reduction and strength also increased. After annealing at warm temperature 500°C, the ultrafine grained was obtained in the 75% rolling reduction. Moreover, it was exhibited excellent strength of 82% and hardness of 66.1% higher than as-received condition with adequate uniform elongation 9.6%.



Edited by:

C. C. Tin and M. R. Johan




P. Nordala et al., "Effect of Rolling Reduction on Microstructure and Mechanical Properties of Plain Low Carbon Steel", Key Engineering Materials, Vol. 701, pp. 187-194, 2016

Online since:

July 2016




* - Corresponding Author

[1] R. Saha, R. Ueji & N. Tsuj, Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel, Journal of Scripta Materialia. 68 (2013) 813-816.

DOI: https://doi.org/10.1016/j.scriptamat.2013.01.038

[2] N. Tsuji, R. Ueji, Y. Minamino, & Y. Saito, A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property, Journal of Scripta Materialia. 46 (2002) 305-310.

DOI: https://doi.org/10.1016/s1359-6462(01)01243-x

[3] H. Azizi-Alizamini, M. Militzer, & W. J. Poole, A novel technique for developing bimodal grain size distributions in low carbon steels, Journal of Scripta Materialia. 57 (2007) 1065-1068.

DOI: https://doi.org/10.1016/j.scriptamat.2007.08.035

[4] Z. Horita, T. Hujinami, M. Nemoto, T. G. Langdon, Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties, Journal of Metallurgical and Meterials Transactions A. 31A (2000) 691-701.

DOI: https://doi.org/10.1007/s11661-000-0011-8

[5] Z. Ruslan Valiev and G. Terence Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Journal of Progress in Materials Science. 51 (2006) 881-981.

DOI: https://doi.org/10.1016/j.pmatsci.2006.02.003

[6] N. Tsuji, R. Ueji, Y. Minamino, Nanoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process, Journal of Scripta Materialia. 47 (2002) 69-76.

DOI: https://doi.org/10.1016/s1359-6462(02)00088-x

[7] X. Huang, G. X. Winther, N. Hansen, T. Hebesberger, A. Vorhauer, R. Pippan, M. Zehetbauer, Microstructures of nickel deformed by high pressure torsion to high strains, Journal of Materials Science Forum. 426 (2003) 2819-2824.

DOI: https://doi.org/10.4028/www.scientific.net/msf.426-432.2819

[8] Y. Okitsu, N. Takata, N. Tsuji, A new route to fabricate ultrafine-grained structures in carbon steels without severe plastic deformation, Journal of Scripta Materialia. 60 (2009) 76-79.

DOI: https://doi.org/10.1016/j.scriptamat.2008.09.002

[9] Z. Li, T. S. Wang, X. J. Zhang, F. C. Zhang, Annealing softening behaviour of cold-rolled low carbon steel with a dual-phase structure and resulting tensile properties, Journal of Materials Science and Engineering: A. 552 (2012) 204-210.

DOI: https://doi.org/10.1016/j.msea.2012.05.032

[10] P. Movahed, S. Kolahgar, S. P. H. Marashi, M. Pouranvari, & N. Parvin, The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite–martensite dual-phase steel sheets, Journal of Materials Science and Engineering: A. 518 (2009).

DOI: https://doi.org/10.1016/j.msea.2009.05.046

[11] A. Hüseyin, K. Z. Havva, & K. Ceylan, Effect of intercritical annealing parameters on dual-phase behavior of commercial low-alloyed steels, Journal of Iron and Steel Research, International. 17 (2010) 73-78.

DOI: https://doi.org/10.1016/s1006-706x(10)60089-1

[12] K. T. Park, S. Y. Han, B. D. Ahn, D. H. Shin, Y. K. Lee, & K. K. Um, Ultrafine grained dual-phase steel fabricated by equal channel angular pressing and subsequent intercritical annealing, Journal of Scripta materialia. 51 (2004) 909-913.

DOI: https://doi.org/10.1016/j.scriptamat.2004.06.017

[13] R. Song, D. Ponge, D. Raabe, & R. Kaspar, Microstructure and crystallographic texture of an ultrafine grained C–Mn steel and their evolution during warm deformation and annealing, Journal of Acta Materialia. 53 (2005) 845-858.

DOI: https://doi.org/10.1016/j.actamat.2004.10.051

[14] Y. Mazaheri, A. Kermanpur, & A. Najafizadeh, A novel route for development of ultrahigh strength dual-phase steels, Journal of Materials Science and Engineering: A. 619 (2014) 1-11.

DOI: https://doi.org/10.1016/j.msea.2014.09.058

[15] N. Matsumura, & M. Tokizane, Microstructure and mechanical properties of dual-phase steel produced by intercritical annealing of lath martensite, Journal of Transactions of the Iron and Steel Institute of Japan. 24 (1984) 648-654.

DOI: https://doi.org/10.2355/isijinternational1966.24.648

[16] J. Łuksza, M. Rumiński, W. Ratuszek, & M. Blicharski, Texture evolution and variations of α-phase volume fraction in cold-rolled AISI 301 steel strip, Journal of Materials Processing Technology. 177 (2006) 555-560.

DOI: https://doi.org/10.1016/j.jmatprotec.2006.04.057

[17] Z. Z. Zhao, G. C. Jin, F. Niu, D. Tang, & A. M. Zhao, Microstructure evolution and mechanical properties of 1 000 MPa cold rolled dual-phase steel, Journal of Transactions of Nonferrous Metals Society of China. 19 (2009) 563-568.

DOI: https://doi.org/10.1016/s1003-6326(10)60109-4

[18] S. M. Hosseini, A. Najafizadeh, & A. Kermanpur, Producing the nano/ultrafine grained low carbon steel by martensite process using plane strain compression, Journal of Materials Processing Technology. 211 (2011) 230-236.

DOI: https://doi.org/10.1016/j.jmatprotec.2010.09.014

[19] Adnan Clik, Effect of colling rate on hardness and microstructure of AISI 1020, AISI1040 and AISI 1060 steels, Internatinal Journal of Physical Sciences. 4 (2009) 514-518.

[20] G. V. Kurdjumo and A. G. Khachaturyan, Phenomena of carbon atom redistribution in martensite, Journal of Metallurgical and Materials Transections. 3 (1972) 1069-1076.

DOI: https://doi.org/10.1007/bf02642438

[21] N. K. Tewary, S. K. Ghosh, S. Bera, D. Chakrabarti & S. Chatterjee, Influence of cold rolling on microstructure, texture and mechanical properties of low carbon high Mn TWIP steel, Journal of Materials Science and Engineering: A. 615 (2014).

DOI: https://doi.org/10.1016/j.msea.2014.07.088

[22] N. Tsuji, Y. Ito, Y. Saito, & Y. Minamino, Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing, Journal of Scripta Materialia. 47 (2002) 893-899.

DOI: https://doi.org/10.1016/s1359-6462(02)00282-8

[23] Y. Okitsu, N. Takata & N. Tsuji, Dynamic deformation behavior of ultrafine-grained iron produced by ultrahigh strain deformation and annealing, Journal of Scripta Materialia. 64 (2011) 896-899.

DOI: https://doi.org/10.1016/j.scriptamat.2011.01.026

[24] M. A. Meyers & K. K. Chawla, Mechanical behavior of materials, Cambridge University Press. (2009) 547.

[25] B. J. Brindley & P. J. Worthington, Yield-point phenomena in substitutional alloys, Metallurgical Reviews. 15 (1970) 101-114.

DOI: https://doi.org/10.1179/mtlr.1970.15.1.101

[26] T. Furuhara, T. Mizoguchi and T. Maki, Ultra-fine (a+q) duplex structure formed by cold rolling and annealing of pearlite, ISIJ International. 45 (2005) 392-398.

DOI: https://doi.org/10.2355/isijinternational.45.392