Creep Properties of Ti-48Al-2Cr-2Nb Produced by Selective Electron Beam Melting

Abstract:

Article Preview

Titanium aluminides are highly attractive for high temperature applications involving dynamic components, e.g. turbine blades or turbocharger wheels, due to their high strength-to-weight ratio. The drawback is the difficult manufacturing of this material class due to the low toughness and high sensitivity to oxygen. Selective electron beam melting SEBM shows a new approach of producing complex titanium aluminide parts without a major oxygen pick up and avoiding problems with brittleness. The high cooling rates of this process lead to a very fine microstructure, which is not fully understood up to now. The microstructure determines the creep properties and therefore defines the performance of this material in high temperature applications. In this contribution, the creep properties of Ti-48Al-2Cr-2Nb fabricated by SEBM are investigated. The influence of the processing parameters and the building direction on the microstructure and the creep properties are discussed and compared to cast material.

Info:

Periodical:

Edited by:

Thomas Ebel and Florian Pyczak

Pages:

190-196

Citation:

V. Juechter and C. Körner, "Creep Properties of Ti-48Al-2Cr-2Nb Produced by Selective Electron Beam Melting", Key Engineering Materials, Vol. 704, pp. 190-196, 2016

Online since:

August 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] Information on http: /www. arcam. com.

[2] P. Heinla, L. Müller, C. Körner, R. F. Singer, F. A. Müller, Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting, Acta Biomaterialia. 4 (2008) 1536-1544.

DOI: https://doi.org/10.1016/j.actbio.2008.03.013

[3] V. Juechter, T. Scharowsky, R.F. Singer, C. Körner, Processing window and evaporation phenomena for Ti–6Al–4V produced by selective electron beam melting, Acta Materialia. 76 (2014) 252-258.

DOI: https://doi.org/10.1016/j.actamat.2014.05.037

[4] H. E. Helmer, C. Körner, R.F. Singer, Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure, Journal of Materials Research. 29 (2014) 1987-1996.

DOI: https://doi.org/10.1557/jmr.2014.192

[5] M.A. Lodes, R. Guschlbauer, C. Körner, Process development for the manufacturing of 99. 94% pure copper via selective electron beam melting, Materials Letters. 143 (2015) 298-301.

DOI: https://doi.org/10.1016/j.matlet.2014.12.105

[6] S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, C. Badini, Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation, Intermetallics. 19 (2011) 776-781.

DOI: https://doi.org/10.1016/j.intermet.2010.11.017

[7] D. Cormier, O. Harrysson, T. Mahale, H. West, Freeform Fabrication of Titanium Aluminide via Electron Beam Melting using Prealloyed and Blended Powders, Research Letters in Material Science. (2007), 1-4.

DOI: https://doi.org/10.1155/2007/34737

[8] M. Lamirand, J. -L. Bonnentien, G. Ferriere, S. Guerina and J. -P. Chevaliera, Relative effects of chromium and niobium on microstructure and mechanical properties as a function of oxygen content in TiAl alloys, Scripta Materialia. 56 (2007).

DOI: https://doi.org/10.1016/j.scriptamat.2006.11.024

[9] L. Loeber, S. Biamino, U. Ackeli, S. Sabbadini, P. Epicoco, P. Fino, J. Eckert, Comparison of selective laser and electron beam melted titanium aluminides, SFF Symp. Texas. (2011) 547.

[10] J. Schwerdtfeger, C. Körner, Selective electron beam melting of Ti-48Al-2Nb-2Cr: Microstructure and aluminium loss, Intermetallics. 49 (2014) 29-35.

DOI: https://doi.org/10.1016/j.intermet.2014.01.004

[11] G.B. Viswanathan, S. Kartikeyan, M.J. Mills, V.K. Vasudevan, Creep properties of a fully-lamellar Ti-48Al-2Cr-2Nb alloy, Materials Science and Engineering. A319 (2001) 833-837.

DOI: https://doi.org/10.1016/s0921-5093(01)01050-4

[12] K. Maruyama, R. Yamamoto, H. Nakakuki, N. Fujitsuna, Effects of lamellar spacing, volume fraction and grain size on creep strength of fully lamellar TiAl alloys, Materials Science and Engineering. A239 – 240 (1997) 419 – 42.

DOI: https://doi.org/10.1016/s0921-5093(97)00612-6

[13] DIN German institute for standardization, DIN EN ISO 204, Beuth Verlag. (2009).

[14] G. Hullin, Mikrostruktur und mechanische Eigenschaften gegossener TiAl-Legierungen, Ph. D. Dissertation, University Erlangen-Nürnberg, Erlangen, (2013).