Effect of Mn-Content on the Deformation Behavior of Binary Ti-Mn Alloys


Article Preview

The effect of Mn-content on the deformation of Ti-Mn low cost alloy system was investigated. A set of alloys ranging in composition from 8 to 20 %wt Mn were produced. The alloys were subjected to solution heat treatment at 900 °C. Existed phases were evaluated through XRD and microstructure observation. The cold workability and the change in micro-hardness were studied. The results showed that β-phase is predominant in all alloys under study. Lower Mn-content alloys had poor cold workability, but higher Mn-content showed a drastic improvement reaches to around 95% cold working until certain composition then dropped. Change in micro-hardness with the Mn-content is hardly observed. On the other, the strain hardening effect generated from cold working enhances the micro-hardness significantly.



Edited by:

Alexander M. Korsunsky, Chobin Makabe, Prof. Haider F. Abdul Amir and Tjokorda Gde Tirta Nindhia




M. K. Gouda et al., "Effect of Mn-Content on the Deformation Behavior of Binary Ti-Mn Alloys", Key Engineering Materials, Vol. 705, pp. 214-218, 2016

Online since:

August 2016




* - Corresponding Author

[1] M.J. Donachie, Titanium: a technical guide, ASM international, (2000).

[2] G. Lütjering, J.C. Williams, Titanium, Springer, (2003).

[3] C. Leyens, M. Peters, Titanium and titanium alloys, Wiley Online Library, (2003).

[4] O. Ivasishin, P. Markovsky, Y.V. Matviychuk, S. Semiatin, C. Ward, S. Fox, A comparative study of the mechanical properties of high-strength β-titanium alloys, Journal of Alloys and Compounds 457 (2008) 296-309.

DOI: https://doi.org/10.1016/j.jallcom.2007.03.070

[5] H. Matsumoto, S. Watanabe, S. Hanada, Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated, Journal of Alloys and Compounds 439 (2007) 146-155.

DOI: https://doi.org/10.1016/j.jallcom.2006.08.267

[6] S. Nemat-Nasser, W. Guo, J. Cheng, Mechanical properties and deformation mechanisms of a commercially pure titanium, Acta Materialia 47 (1999) 3705-3720.

DOI: https://doi.org/10.1016/s1359-6454(99)00203-7

[7] S. Zaefferer, A study of active deformation systems in titanium alloys: dependence on alloy composition and correlation with deformation texture, Materials Science and Engineering: A 344 (2003) 20-30.

DOI: https://doi.org/10.1016/s0921-5093(02)00421-5

[8] J. Hwang, S. Kuramoto, T. Furuta, K. Nishino, T. Saito, Phase-stability dependence of plastic deformation behavior in Ti-Nb-Ta-Zr-O alloys, Journal of Materials Engineering and Performance 14 (2005) 747-754.

DOI: https://doi.org/10.1361/105994905x75556

[9] O. Karasevskaya, O. Ivasishin, S. Semiatin, Y.V. Matviychuk, Deformation behavior of beta-titanium alloys, Materials Science and Engineering: A 354 (2003) 121-132.

DOI: https://doi.org/10.1016/s0921-5093(02)00935-8

[10] J. Adamus, Characteristic of shaping titanium sheets by cold working methods, Applied Mechanics and Engineering 11 (2006) 727.

[11] A. Singh, R. Schwarzer, Evolution of cold rolling texture in the binary alloys: Ti–0. 4 Mn and Ti–1. 8 Mn, Materials Science and Engineering: A 307 (2001) 151-157.

DOI: https://doi.org/10.1016/s0921-5093(00)01965-1

[12] Y. Xu, D. Yi, H. Liu, X. Wu, B. Wang, F. Yang, Effects of cold deformation on microstructure, texture evolution and mechanical properties of Ti–Nb–Ta–Zr–Fe alloy for biomedical applications, Materials Science and Engineering: A 547 (2012) 64-71.

DOI: https://doi.org/10.1016/j.msea.2012.03.081

[13] L. Wang, W. Lu, J. Qin, F. Zhang, D. Zhang, Microstructure and mechanical properties of cold-rolled TiNbTaZr biomedical β titanium alloy, Materials Science and Engineering: A 490 (2008) 421-426.

DOI: https://doi.org/10.1016/j.msea.2008.03.003

[14] K. Taneichi, M. Taira, E. Sukedai, T. Narushima, Y. Iguchi, C. Ouchi, Alloy Design and Property Evaluation of New. BETA. Type Titanium Alloy with Excellent Cold Workability and Biocompatibility, ISIJ International 46 (2006) 292-301.

DOI: https://doi.org/10.2355/isijinternational.46.292

[15] Y. Takemoto, I. Shimizu, A. Sakakibara, M. Hida, Y. Mantani, Tensile behavior and cold workability of Ti-Mo alloys, Materials Transactions 45 (2004) 1571-1576.

DOI: https://doi.org/10.2320/matertrans.45.1571

[16] M.K. Gouda, M.A.H. Gepreel, A.A. El Moniem, A study on phases change of Ti-Mn alloys produced by metal injection molding, AIP Conference Proceedings 1569 (2013) 203-207.

DOI: https://doi.org/10.1063/1.4849259

[17] K. Ushida, K. Tsuge, T. Akahori, T. Hattori, M. Niinomi, K. Ishikura, M.A.H. Gepreel, Mechanical Strength and Biocompatibility of Meta-Stable β Type Ti-5Fe-3Nb-3Zr for Biomedical Applications, Journal of the Japan Institute of Metals and Materials 76 (2012).

DOI: https://doi.org/10.2320/jinstmet.76.397

[18] M.K. Gouda, K. Nakamura, M. A. H. Gepreel, First-principles study on the effect of alloying elements on the elastic deformation response in β-titanium alloys, Journal of Applied Physics 117 (2015) 214905.

DOI: https://doi.org/10.1063/1.4921972

[19] M. Ikeda, M. Ueda, R. Matsunaga, M. Ogawa, M. Niinomi, Isothermal aging behavior of beta titanium-manganese alloys, Materials Transactions 50 (2009) 2737-2743.

DOI: https://doi.org/10.2320/matertrans.ma200902

[20] I. Weiss, S. Semiatin, Thermomechanical processing of beta titanium alloys—an overview, Materials Science and Engineering: A 243 (1998) 46-65.

DOI: https://doi.org/10.1016/s0921-5093(97)00783-1

[21] M.A. -H. Gepreel, Texturing Tendency in β-Type Ti-Alloys, in: P. Wilson (Ed. ), Recent Developments in the Study of Recrystallization, InTech, 2012, p.232.

[22] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Design and mechanical properties of new β type titanium alloys for implant materials, Materials Science and Engineering: A 243 (1998) 244-249.

DOI: https://doi.org/10.1016/s0921-5093(97)00808-3