Effect of Al Content in Low Carbon High Manganese TWIP Steel


Article Preview

Al addition in TWIP steel not only reduces the specific weight but also increases the stacking fault energy which strongly affects the deformation mechanisms. Hot rolled air cooled TWIP steel with low Al content (1.61 wt. %) reveals duplex microstructure comprising austenite with ferrite, whereas steel with higher content of Al (3.56 wt. %) reveals fully austenite microstructure. It is evident that nano-twins are formed within austenite grain after 50% cold deformation. TWIP steel with the duplex microstructure exhibits an excellent combination of strength and ductility. Hardness and tensile strength values of air cooled steel specimens increase with a concomitant lowering of total elongation with the application of cold deformation. However, steel with low Al content shows higher hardness and tensile strength along with lower elongation as compared to the TWIP steel having higher Al content.



Edited by:

Guojian Chen, Haider F. Abdul Amir, Puneet Tandon, Poi Sim Khiew




N. K. Tewary et al., "Effect of Al Content in Low Carbon High Manganese TWIP Steel", Key Engineering Materials, Vol. 706, pp. 16-22, 2016

Online since:

August 2016




* - Corresponding Author

[1] C. Zhao, R. Song, L. Zhang, F. Yang, T. Kang, Effect of annealing temperature on the microstructure and tensile properties of Fe–10Mn–10Al–0. 7C low-density steel, Mater. Des. 91 (2016) 348-360.

DOI: https://doi.org/10.1016/j.matdes.2015.11.115

[2] K. M. Rahman, N. G. Jones, D. Dye, Micromechanics of twinning in a TWIP steel, Mater. Sci. Eng. A 635 (2015) 133-142.

[3] Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application, Int. J. Plast. 16 (2000) 1391-1409.

DOI: https://doi.org/10.1016/s0749-6419(00)00015-2

[4] Eva Mazancová, Karel Mazanec, Stacking fault energy in high manganese alloys, Mater. Eng. 16(2009) 26-31.

[5] B. Ma, C. Li, J. Zheng, Y. Song, Y. Han, Strain hardening behavior and deformation substructure of Fe–20/27Mn–4Al–0. 3C non-magnetic steels, Mater. Des. 92 (2016) 313-321.

DOI: https://doi.org/10.1016/j.matdes.2015.12.038

[6] G. Frommeyer, U. Brüx and P. Neumann, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes, ISIJ Int. 43 (2003) 438-446.

DOI: https://doi.org/10.2355/isijinternational.43.438

[7] Y. S. Chun, K. -Tae Park, C. S. Lee, Delayed static failure of twinning-induced plasticity steels, Scripta Mater. 66 (2012) 960-965.

DOI: https://doi.org/10.1016/j.scriptamat.2012.02.038

[8] S. S. Sohn, S. Lee, B. -J. Lee, J. -H. Kwak, Microstructural developments and tensile properties of lean Fe-Mn-Al-C lightweight steels, JOM, 66(9) (2014) 1857-1867.

DOI: https://doi.org/10.1007/s11837-014-1128-3

[9] S. Hamada, L. P. Karjalainen, M. C. Somani, The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels, Mater. Sci. Eng. A 467 (2007) 114-124.

DOI: https://doi.org/10.1016/j.msea.2007.02.074

[10] Imandoust, A. Zarei-Hanzaki, S. Heshmati-Manesh, S. Moemeni, P. Changizian, Effects of ferrite volume fraction on the tensile deformation characteristics of dual phase twinning induced plasticity steel, Mater. Des. 53 (2014) 99-105.

DOI: https://doi.org/10.1016/j.matdes.2013.06.033

[11] V. Torabinejad, A. Zarei-Hanzaki, S. Moemeni, A. Imandoust, An investigation to the microstructural evolution of Fe–29Mn–5Al dual-phase twinning-induced plasticity steel through annealing, Mater. Des. 32 (2011) 5015–5021.

DOI: https://doi.org/10.1016/j.matdes.2011.06.004

[12] A. S-Akbari, J. Imlau, U. Prahl, W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels, Metall. Mater. Trans. 40A (2009) 3076-3090.

DOI: https://doi.org/10.1007/s11661-009-0050-8

[13] S. Allain, J. -P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys, Mater. Sci. Eng. A 387–389 (2004) 158-162.

DOI: https://doi.org/10.1016/j.msea.2004.01.059

[14] X. Peng, D. Zhu, Z. Hu, W. Yi, H. Liu, M. Wang, Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels: Effect of Cu addition, Mater. Des. 45 (2013) 518-523.

DOI: https://doi.org/10.1016/j.matdes.2012.09.014

[15] Gumus, B. Bal, G. Gerstein, D. Canadinc, H. J. Maier, Twinning activity in high-manganese austenitic steels under high velocity loading, Mater. Sci. Technol. Advance Articles (2015) 1743284715Y. 0000000111.

DOI: https://doi.org/10.1179/1743284715y.0000000111

[16] R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemuraa, K. Kunishige, Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure, Scripta Mater. 59 (2008) 963-966.

DOI: https://doi.org/10.1016/j.scriptamat.2008.06.050

[17] Gutierrez-Urrutia, D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt. % Mn–0. 6 wt. % C TWIP steel observed by electron channeling contrast imaging, Acta Mater. 59 (2011) 6449-6462.

DOI: https://doi.org/10.1016/j.actamat.2011.07.009