Mechanical Behaviour under Quasi-Static Loading of Open-Cell Foams of 6061-T6 Al Alloys Processed by Pressurized Salt Infiltration Technique

Abstract:

Article Preview

Here, we report the mechanical behaviour of open-cell foams of 6061-T6 Al-alloys under quasi-static loading. The foams were processed by pressurized salt infiltration technique with efficient control over pore size and distribution. Spherical salt beads of NaCl of required size distribution were used as preforms. The molten alloy was infiltrated into the preforms under an inert gas pressure of 2 bar followed by cooling and leaching of the salt pattern in a suitable aqueous medium. The pressurized infiltration process is convenient to overcome the capillary forces arising from the non-wetting conditions between salt beads and molten alloys and offers a versatile and economical route for the production of open-cell foams. The shape, size and distribution of the pores were studied with optical microscope and X-ray computed tomography (X-ray CT). The developed foam samples were cut into required dimensions following ASTM E9-09 standard and their mechanical properties were analyzed under quasi-static compressive loading.

Info:

Periodical:

Edited by:

Guojian Chen, Haider F. Abdul Amir, Puneet Tandon, Poi Sim Khiew

Pages:

23-28

DOI:

10.4028/www.scientific.net/KEM.706.23

Citation:

B. Soni and S. Biswas, "Mechanical Behaviour under Quasi-Static Loading of Open-Cell Foams of 6061-T6 Al Alloys Processed by Pressurized Salt Infiltration Technique", Key Engineering Materials, Vol. 706, pp. 23-28, 2016

Online since:

August 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] T. Nakamura, S. V. Gnyloskurenko, K. Sakamoto, A. V. Byakova, R. Ishikawa, Development of new foaming agent for metal foam, Mater. T. JIM, 43 (2002) 1191-1196.

DOI: 10.2320/matertrans.43.1191

[2] H. Kanahashi, T. Mukai, T. G. Nieh, T. Aizawa, K. Higashi, Effect of cell size on the dynamic compressive properties of open-celled aluminum foams, Mater. T. JIM, 43 (2002) 2548-2553.

DOI: 10.2320/matertrans.43.2548

[3] E. Koza, M. Leonowicz, S. Wojciechowski, F. Simancik, Compressive strength of aluminium foams, Mater. Lett. 58 (2003) 132-135.

DOI: 10.1016/s0167-577x(03)00430-0

[4] T. G. Nieh, K. Higashi, J. Wadsworth, Effect of cell morphology on the compressive properties of open-cell aluminum foams, Mater. Sci. Eng. A, 283 (2000) 105-110.

DOI: 10.1016/s0921-5093(00)00623-7

[5] B. C. Tappan, S. A. Steiner, E. P. Luther, (2010) Nanoporous metal foams. Angew. Chem. Int. Ed., 49: 4544–4565.

DOI: 10.1002/anie.200902994

[6] A. Paul, U. Ramamurty, Variability in mechanical properties of a metal foam, Mater. Sci. Eng. A 281 (2000) 1-7.

[7] C. Xiao, W. Zhi, M. A. Hong, Z. Long, Y. Gui, Effects of cell size on compressive properties of aluminum foam, T. Nonferr. Metal Soc. 16 (2006) 351-356.

[8] N. Michailidis, F. Stergioudi, A. Tsouknidas, E. Pavlidou, Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material, Mater. Sci. Eng. A, A528 (2011) 1662-1667.

DOI: 10.1016/j.msea.2010.10.088

[9] H. Bafti, H. Ali, Compressive properties of aluminum foam produced by powder-carbamide spacer route, Mater. Design, 52 (2013) 404-411.

DOI: 10.1016/j.matdes.2013.05.043

[10] M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal foams: a design guide (2000) ISBN: 978-0-7506-7219-1.

[11] J. Banhart, Manufacturing routes for metallic foams, JOM 52 (2000) 22-27.

DOI: 10.1007/s11837-000-0062-8

[12] S. Biswas, B. Soni, Indian Patent 2015. Application No: 742/DEL/2015, priority date: March 18, (2015).

[13] L. J. Gibson, M. F. Ashby, Cellular solids: structure and properties, second Ed., Cambridge: Cambridge University Press, (1999).

[14] R. Surace, L.A.C. De Filippis, D.A. Ludovico, G. Boghetich, Influence of processing parameters on aluminium foam produced by space holder technique, Mater. Design 30 (2009) 1878-1885.

DOI: 10.1016/j.matdes.2008.09.027

[15] ASTM, Standard test methods of compression testing of metallic materials at room temperature, ASTM E9-09, (2009).

[16] H. Kanahashi, T. Mukai, T.G. Nieh, T. Aizawa, K. Higashi, Effect of cell size on the dynamic compressive properties of open-celled aluminum foams, Mater. Trans. 43 (2002) 2548-2553.

DOI: 10.2320/matertrans.43.2548

[17] F. Yi, Z. Zhu, F. Zu, S. Hu, P. Yi, Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams, Mater. Charact. 47 (2001) 417-422.

DOI: 10.1016/s1044-5803(02)00194-8

[18] B. Jiang, Z. Wang, N. Zhao, Effect of pore size and relative density on the mechanical properties of open cell aluminum foams, Scripta Mater. 56 (2007) 169-172.

DOI: 10.1016/j.scriptamat.2006.08.070

In order to see related information, you need to Login.