Mechanical and Microstructural Evaluation of Y-TZP Using Microwave Sintering Technique


Article Preview

The effects of adding Al2O3 and CeO2 on the microstructure, mechanical and physical properties of 3 mol% yttria-stabilized zirconia (3Y-TZP) ceramics is presented over a wide sintering regime by pressureless sintering. It has been revealed that small additions of dopant to Y-TZP were beneficial in enhancing the mechanical properties of Y-TZP. Sintered samples were used to evaluate the bulk density, Vickers’s hardness, Young’s modulus, and shrinkage of the material. Al2O3 and CeO2 doped Y-TZPs sintered at 1450 C retained high bulk density (>97% of theoretical density) and Young’s modulus (>200 GPa) without sacrificing tetragonal phase stability. The optimum level of dopant was found to be at 0.3 Al2O3 / 0.5 CeO2 at sintering temperature between 1250 C and 1450C using the standard 12 min holding time cycle, with sintered body exhibiting excellent combination of properties when compared to the undoped ceramics.



Edited by:

Guojian Chen, Haider F. Abdul Amir, Puneet Tandon, Poi Sim Khiew




M. Golieskardi et al., "Mechanical and Microstructural Evaluation of Y-TZP Using Microwave Sintering Technique", Key Engineering Materials, Vol. 706, pp. 36-41, 2016

Online since:

August 2016




* - Corresponding Author

[1] G. A. Gogotsi, V. I. Galenko, S. P. Mudrik, B. I. Ozersky, V. V. Khvorostyany, and T.A. Khristevich, Ceramics International, 36 (2010) 345–350.


[2] A. H. A. Sabrah N.B. Cook, P. Luangruangrong A.T. Hara, and M. C. Bottino, Dental Materials, 29 (2013) 666–673.


[3] P. M. Kelly and L. R. F. Rose, "Progress in Materials Science, 47 (2002) 463–557.

[4] R.C. Garvie, R.H. Hannink and R.T. Pascoe, Nature 258 (1975) 703-704.

[5] J. Chevalier, L. Gremillard, A.V. Virkar and D.R. Clarke, J. Am. Ceram. Soc. 92 (2009) 1901-(1920).

[6] S. Ramesh, M. Amiriyan, S. Meenaloshini, R. Tolouei, M. Hamdi, J. Pruboloksono and W.D. Teng, Ceram. Int. 37 (2011) 3583-3590.


[7] C. Schr¨oder, A. Renz, C. Koplin, and A. Kailer, Journal of the European Ceramic Society, 34 (2014) 4311– 4319.

[8] K. Kobayashi, H. Kuwajima and T. Masaki, Solid State Ionics 3-4 (1981) 489-493.

[9] S. Lawson, J. Eur. Ceram. Soc. 15 ( 1995) 485-502.

[10] B. Liang, C. Ding, H. Liao and C. Coddet, J. Eur. Ceram. Soc. 29 (2009) 2267-2273.

[11] Z. Zhao, C. Liu and D.O. Northwood, Mater. Des. 20 (1999) 297-301.

[12] H. Zhou, J. Li, D. Yi and L. Xiao, Physics Procedia 22 (2011) 14-19.

[13] Z. -K. Wu, N. Li, C. Jian, W. -Q. Zhao and J. -Z. Yan, Ceram. Int. 39 (2013) 7199-7204.

[14] Hjerppe, J., Vallittu, P.K., Froberg, K., and Lassila, L.V., Effect of sintering time on biaxial strength of zirconium dioxide. Dental materials., 2009. 25(2): pp.166-71.


[15] S. Ramesh, M. Amiriyan, S. Meenaloshini, R. Tolouei, M. Hamdi, J. Pruboloksono and W.D. Teng, Ceram. Int. 37 (2011) 3583-3590.


[17] Mendelson M.I.: J. Am. Ceram. Soc. 52, (1969) 443.

[18] H. Zhou, J. Li, D. Yi, L. Xiao, Physics Procedia, 22 (2011) 14-19.

[19] M. Golieskardi, M. Satgunam, D. Ragurajan, Int. J. Mechanical and Aeronautical Engineering, 1 (2014), 48-52.

[20] S. Ramesh, S. Meenaloshini, C. Y. Tan, W. J. Kelvin Chew, W. D. Teng, Ceramic International, 34 (2008) 1603-1608.

[21] Somiya S. Nuclear Graphite. Advanced Ceramics, 2 (2013)117-118.

[22] Deryagina, I., Khrustov. V., Nokonow, A., Paranin, S. & Ivanov, V. Journal of the European Ceramics Society, 34 (2014) 45-53.

[23] D. Ragurajan, M. Satgunam, M. Golieskardi, International Scholarly Research Notices, (2014) 1-5.

Fetching data from Crossref.
This may take some time to load.