FE Simulation of Residual Welding Stresses: Aluminium and Steel Structural Components

Abstract:

Article Preview

One of the decisive criteria in the selection of material between steel and aluminium could be the welding RS (residual stresses), which play an important role for the fatigue behavior of the structures under cycling loading. In the current paper simulations in commercial FE software ANSYS were carried out, in order to calculate the welding RS field for three different materials: structural steel S355 and the aluminum grades EN AW-6060 and EN AW-5754. In the case of EN AW-6060 influence of recrystallization on the yield strength of the HAZ (heat affected zone) was taken into consideration.

Info:

Periodical:

Edited by:

Federico M. Mazzolani, Francesco Bellucci, Beatrice Faggiano, Antonino Squillace

Pages:

268-274

Citation:

P. Knoedel et al., "FE Simulation of Residual Welding Stresses: Aluminium and Steel Structural Components", Key Engineering Materials, Vol. 710, pp. 268-274, 2016

Online since:

September 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] L. -E. Lindgren, Computational welding mechanics - Thermomechanical and microstructural simulations, Cambridge England: Woodhead Publishing in Materials, (2007).

[2] J. Goldak, A. Chakravarti, and M. Bibby, A new finite element model for welding heat sources, Metall. Trans. B. 15 (2) (1984) 299–305.

DOI: https://doi.org/10.1007/bf02667333

[3] J.N. DuPont and A.R. Marder, Thermal Efficiency of Arc Welding Processes, Welding Research Supplement. (1995) 406–416.

[4] P. Knoedel, S. Gkatzogiannis, and T. Ummenhofer, Practical aspects of FE weld simulation: A new straightforward approach to calculate the residual welding stresses, Constr. Steel Res., submitted in (2016).

DOI: https://doi.org/10.4028/www.scientific.net/kem.710.268

[5] G. E. Totten and S. D. MacKenzie (eds. ), Handbook of Aluminum - Volume 1 - Physical Metallurgy and Processes. Taylor & Francis Inc., New York, USA, (2003).

[6] ANSYS® Academic Research, Release 16. 2.

[7] European Standard, BS EN ISO 9692-1. Recommendations for joint preparation - Part 1: Manual metal-arc welding, gas-shielded metal-arc welding, gas welding, TIG welding and beam welding of steels (ISO 9692-1: 2003), European Committee for Standardization, Brussels, (2003).

DOI: https://doi.org/10.3403/02953984u

[8] European Standard, EN ISO 9692-3. Welding and allied processes – Recommendations for joint preparation – Part 3: Metal inert gas welding and tungsten inert gas welding of aluminium and its alloys (ISO/DIS 9692-3: 2014), European Committee for Standardization, Brussels, (2003).

DOI: https://doi.org/10.3403/02283396u

[9] European Standard, DIN EN ISO 18273. Welding consumables – Wire electrodes, wires and rods for welding of aluminium and aluminium alloys – Classification (ISO/DIS 18273: 2014); German version prEN ISO 18273: 2014, European Committee for Standardization, Brussels, (2014).

DOI: https://doi.org/10.3403/03002914u

[10] European Standard, EN 1999-1-2. Eurocode 9 - Design of aluminium structures - Part 1-2: Structural fire design, European Committee for Standardization, Brussels, (2009).

[11] A. H. F. M. Ahmadzadeh, B. Farshi, H. R. Salimi, Residual stresses due to gas arc welding of aluminum alloy joints by numerical simulations, Int. J. Mater. Form. 6 (2013) 233–247.

DOI: https://doi.org/10.1007/s12289-011-1081-4

[12] J. Hildebrand, Numerische Schweißsimulation: Bestimmung von Temperatur, Gefüge und Eigenspannung an Schweißverbindungen aus Stahl- und Glaswerkstoffen, Bauhaus-Universität Weimar, PhD Thesis, (2008).

[13] European Standard, EN 1999-1-2. Eurocode 9 - Eurocode 9: Design of aluminium structures - Part 1-1: General structural rules, European Committee for Standardization, Brussels, (2009).

[14] C. B. Fuller and M. W. Mahoney, The effect of friction stir processing on 5083-H321/5356 Al arc welds: Microstructural and mechanical analysis, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 37 (12) (2006) 3605–3615.

DOI: https://doi.org/10.1007/s11661-006-1055-1

[15] C. Radlbeck, P. Knödel, R. Gitter, I. Maniatis, A. Haese, T. Herrmann, S. Allmeier, G. Krause, W. Mader, Bemessung und Konstruktion von Aluminiumtragwerken, in U. Kuhlmann (Ed. ), Stahlbaukalender 2016, Ernst & Sohn, Berlin.

DOI: https://doi.org/10.1002/9783433606278.ch3

[16] S. Ohta, K. Asai, and S. Ohya, Investigation on Temperature Distribution and Cooling Rate in Molten Pool, Q. J. JAPAN Weld. Soc. 8 (4) (1984) 299–305.

[17] K. Yamazaki, E. Yamamoto, K. Suzuki, F. Koshiishi, S. Tashiro, M. Tanaka, and K. Nakata, Measurement of surface temperature of weld pools by infrared two color pyrometry, Sci. Technol. Weld. Join. 15 (1) (2010) 40–47.

DOI: https://doi.org/10.1179/136217109x12537145658814

[18] H. Kraus, Experimental measurement of thin plate 304 stainless steel GTA weld pool surface temperatures, Weld. J. December (1987) 353–359.

[19] P. Ferro, H. Porzner, A. Tiziani and F. Bonollo, The influence of phase transformations on residual stresses induced by the welding process—3D and 2D numerical models, Modelling Simul. Mater. Sci. Eng. 14 (2006) 117–136.

DOI: https://doi.org/10.1088/0965-0393/14/2/001

[20] S. Gkatzogiannis, PhD Thesis in progress, KIT Steel & Lightweight Structures, Research Center for Steel, Timber & Masonry, (2016).