Pulsed Electron Beam Propagation in Oxygen

Abstract:

Article Preview

The paper presents the results of the experimental investigation of the pulsed electron beam propagation propagated in a drift tube filled with oxygen. The pressure was 50, 300, and 760 Torr in the drift tube. The experiments were carried out using a TEA-500 pulsed electron accelerator (450 kV accelerating voltage; 10 kA electron beam current; 80±1 ns pulse duration to the base; up to 200 J pulse energy; and 5 cm diameter beam). The electron beam was propagated in the drift tube (40 cm long), 14 cm in diameter composed of two sections equipped with two reverse current shunts. The experiments were carried out which fixed the absorbed dose registered on the walls of the drift chamber.

Info:

Periodical:

Edited by:

Georgiy Osokin, Gennady E. Remnev, Valeriy Pogrebenkov, Sergey Psakhie, Nikolay Ratakhin

Pages:

31-36

Citation:

G. Kholodnaya et al., "Pulsed Electron Beam Propagation in Oxygen", Key Engineering Materials, Vol. 712, pp. 31-36, 2016

Online since:

September 2016

Export:

Price:

$41.00

* - Corresponding Author

[1] A. Weisenburger, W. An, V. Engelko, A. Heinzel, A. Jianu, F. Lang, G. Mueller, F. Zimmermann, Intense pulsed electron beams application of modified materials, Acta Physica Polonica A. 115 (2009) 1053-1055.

DOI: https://doi.org/10.12693/aphyspola.115.1053

[2] W.A. Parejo Calvo, C. L. Duarte, L.D. Machado, J.E. Manzoli, A.B. Geraldo, Y. Kodama, L.G. Silva, E.S. Pino, E.S.R. Somessari, C.G. Silveira, P.R. Rela, Electron beam accelerators-trends in radiation processing technology for industrial and environmental applications in Latin America and the Caribbean, J. Radiation Physics and Chemistry. 81 (2012).

DOI: https://doi.org/10.1016/j.radphyschem.2012.02.013

[3] S. Dånmark, A. Finne-Wistrand, K. Schander, M. Hakkarainen, K. Arvidson, K. Mustafa, A. -C. Albertsson, In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization, J. Acta Biomaterialia. 7 (2011).

DOI: https://doi.org/10.1016/j.actbio.2011.02.011

[4] E. Beyreuther, W. Enghardt, M Kaluza, L. Karsch,L. Laschinsky, E. Lessmann, M. Nicolai, J. Pawelke, C. Richter, R. Sauerbrey, H. -P. Schlenvoigt, M. Baumann, Establishment of technical prerequisites for cell irradiation experiments with laser-accelerated electrons, J. Medical Physics. 37 ( 2010) 1392-1400.

DOI: https://doi.org/10.1118/1.3301598

[5] S. Yu. Sokovnin, V.G. Il'Ves, Production of nanopowders using pulsed electron beam, J. Ferroelectrics. 436 (2012) 101-107.

DOI: https://doi.org/10.1080/10584587.2012.730951

[6] G. Kholodnaya, D. Ponomarev, R. Sazonov, G. Remnev, Characteristics of pulsed plasma-chemical synthesis of silicon dioxide nanoparticles, J. Radiation Physics and Chemistry. 103 (2014) 114-118.

DOI: https://doi.org/10.1016/j.radphyschem.2014.05.048

[7] M.M. Mikhailov, S.A. Yuryev, G.E. Remnev, R.V. Sazonov, G.E. Kholodnaya, D. V. Ponomarev, Effect of temperature on radiation resistance of TiO2 powders during heating and modification by SiO2 nanoparticles, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 336 (2014).

DOI: https://doi.org/10.1016/j.nimb.2014.07.002

[8] A.V. Ivanov, V.M. Abashkin, E.A. Filippov, Y.N. Tumanov, Plasma chemical processing of depleted uranium hexafluoride, J. Materials Research Society Symposium. 465 (1997) 609-614.

DOI: https://doi.org/10.1557/proc-465-609

[9] I. Egorov, V. Esipov, G. Remnev, M. Kaikanov, E. Lukonin, A. Poloskov, A high-repetition rate pulsed electron accelerator, J. IEEE Transactions on Dielectrics and Electrical Insulation 20 (2013) 1334-1339.

DOI: https://doi.org/10.1109/tdei.2013.6571453

[10] L. R. Merinova, L. N. Shiyan, G. E. Remnev, A. V. Stepanov, M. I. Kaikanov, D. A. Voyno, Investigation of the laws of ionizing radiation effect on the stability of the colloidal solutions of iron, 7th International Forum on Strategic Technology, IFOST 2012; Tomsk; 2012; Category number CFP12786-PRT; Code 94712.

DOI: https://doi.org/10.1109/ifost.2012.6357492

[11] J.D. Miller, R.M. Gilgenbach, Transport of long-pulse, high-current electron beams in preformed monoatomic plasma channels in the ion focus regime, J. IEEE Nuclear and Plasma Sciences Society. 18 (1990) 658-663.

DOI: https://doi.org/10.1109/27.55940

[12] R. F Lucey, R.M. Gilgenbach, J.D. Miller, J.E. Tucker and R.A. Bosch, Transport and stability of long-pulse relativistic electron beams in UV laser-induced ion channels, J. Physics of Fluids B. 1 (1989) 430-434.

DOI: https://doi.org/10.1063/1.859157

[13] R.F. Lucey, R.M. Gilgenbach, J.E. Tucker and C.L. Enloe, Propagation of microsecond electron beams in gases and excimer laser-ionized channels in the ion-focused regime, J. Laser and Particle Beams. 6 (1988) 687-697.

DOI: https://doi.org/10.1017/s0263034600005620

[14] S.G. Arutiunian, O.V. Bogdankevich, Iu.F. Bondar, Anri A. Rukhadze, Transport of a high-intensity electron beam in neutral gases, J. Soviet journal of quantum electronics. 9 (1982) 234-247.

DOI: https://doi.org/10.1070/qe1982v012n02abeh005459

[15] D.R. Welch, D.V. Rose, B.V. Oliver, E. Schamiloglu, K. Hahn, J.E. Maenchen, Transport of a relativistic electron beam in gas and plasma-filled focusing cells for x-ray radiography, J. Physics Plasmas. 11 (2004) 751-759.

DOI: https://doi.org/10.1063/1.1633762

[16] S.B. Swanekamp, The theory and simulation of relativistic electron beam transport in the ion-focused regime, J. Physics of Fluids B 4 (1992) 1332-1348.

[17] E.A. Abramyan, B.A. Altercop, G.D. Kuleshov, Electron beam energy transport: problems and prospects, J. Radiation Physics and Chemistry. 25 (1985) 807-815.

DOI: https://doi.org/10.1016/0146-5724(85)90161-x

[18] . P.A. Milleretal, Intense relativistic electron beam, Journal of Applied Physics. 43 (1972) 3001-3008.

[19] S.E. Graybill, Electron beam propagation in gas, IEEE Transactions on Nuclear Science. 18 (1971) 438-442.

[20] D.A. Mc. Arthur, J.W. Poukey. Distribution of absorbed energy density of pulsed electron beam along the direction of beam distribution depending on pressure of electronegative gas compound, Physical Review Letters. 27 (1971) 1765-1768.

[21] S. Putnam. Transport of pulsed electron beam, Report at the 11th Symposium on Electron, Ion and Laser Beam Technology. Boulder, Colorado, 1971, 343-345.

[22] G.E. Kholodnaya, R.V. Sazonov, D.V. Ponomarev, G.E. Remnev, I.S. Zhirkov, Pulsed electron beam propagation in argon and nitrogen gas mixture, J. Physics Plasmas. 22 (2015) Article number 103116.

DOI: https://doi.org/10.1063/1.4934608

[23] G.E. Remnev, E.G. Furman, A.I. Pushkarev, S.B. Karpuzov, N.A. Kondrat'ev, D.V. Goncharov, A high-current pulsed accelerator with a matching transformer, J. Instruments and Experimental Techniques. 47 (2004) 394–398.

DOI: https://doi.org/10.1023/b:inet.0000032909.92515.b7

[24] Y.I. Isakova, A.I. Pushkarev, G.E. Kholodnaya, A differential high-voltage divider, J. Instruments and Experimental Techniques. 54 (2011) 183-186.

DOI: https://doi.org/10.1134/s0020441211020175

[25] D. Ponomarev, G. Kholodnaya, G. Remnev, M. Kaikanov, R. Sazonov, Study on nanosecond pulsed electron beam generation, Journal of Physics: Conference Series. 552 (2014) Article number 012024.

DOI: https://doi.org/10.1088/1742-6596/552/1/012024

[26] G.E. Kholodnaya, R.V. Sazonov, D.V. Ponomarev, G.E. Remnev, A.A. Vikanov, Influence of current-conducting inserts in a drift tube on transportation of a pulsed electron beam at gigawatt power, J. Laser and particle beams. 33 (2015) 749-754.

DOI: https://doi.org/10.1017/s0263034615000762