The Occurrence of Mold in Construction Materials before Inbuilt into New Building and Protection against this Type of Biodegradation

Abstract:

Article Preview

Mold together with other microorganisms are belonging to the group of biodeteriogens which is common occurred on both the inner and outer surfaces of building structures. Mentioned study is comparing the generic composition of mold on the surface of board materials (wood and plaster based) with the generic composition of mold trapped air in Central Bohemia. In the air they were identified following species of mold: Cladosporium, Aspergillus, Penicillium, Aureobasidium, Epiccocum, Alternaria, Mucor. The almost identical species of mold was found on board materials. It also investigated the minimal inhibitory concentrations of silver nanoparticles against selected mold (Cladosporium, Aspergillus, Penicillium, Aureobasidium, Epiccocum, Alternaria). The results show that the minimum inhibitory concentration for most of mold is 1.5 g / m2 except Apergillus species, where the minimum inhibitory concentrations have a double value.

Info:

Periodical:

Edited by:

Michaela Kostelecká, Pavel Kuklík

Pages:

44-50

Citation:

P. Ryparová and Z. Rácová, "The Occurrence of Mold in Construction Materials before Inbuilt into New Building and Protection against this Type of Biodegradation", Key Engineering Materials, Vol. 714, pp. 44-50, 2016

Online since:

September 2016

Export:

Price:

$41.00

* - Corresponding Author

[1] E, Piecková a kol., Microscopic fungi in dwellings and ther health implications, Annals of agricultural and environmental medicine 6 (1999) 1-11.

[2] E. Vereecken a kol., A comparison of different mould prediction models, Proceedings building Simulation, 12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November (2011).

[3] E. Vereecken a kol., Review of mould predictiom models and their influence on mould risk evaluation, Building Enviroment 51 (2012) 296-310, doi: 10. 1016/j. buildenv. 2011. 11. 003.

DOI: https://doi.org/10.1016/j.buildenv.2011.11.003

[4] B. Gutarowska and Z. Żakowska, Elaboration and application of mathematical model for estimation of mould contamination of some building materials based on ergosterol content determination, Int. Biodeterior. Biodegradation, vol. 49, no. 4, p.299–305, Jun. (2002).

DOI: https://doi.org/10.1016/s0964-8305(02)00063-x

[5] T. Verdier, M. Coutand, A. Bertron, and C. Roques, A review of indoor microbial growth across building materials and sampling and analysis methods, Build. Environ., vol. 80, p.136–149, Oct. (2014).

DOI: https://doi.org/10.1016/j.buildenv.2014.05.030

[6] G. Lu, D. Wu, and R. Fu, Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate, React. Funct. Polym., vol. 67, no. 4, p.355–366, (2007).

DOI: https://doi.org/10.1016/j.reactfunctpolym.2007.01.008

[7] S. Silver, L. T. Phung, and G. Silver, Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds, J. Ind. Microbiol. Biotechnol., vol. 33, no. 7, p.627–634, (2006).

DOI: https://doi.org/10.1007/s10295-006-0139-7

[8] B. Kwakye-Awuah, C. Williams, M. A. Kenward, and I. Radecka, Antimicrobial action and efficiency of silver-loaded zeolite X, J. Appl. Microbiol., vol. 104, no. 5, p.1516–1524, (2008).

DOI: https://doi.org/10.1111/j.1365-2672.2007.03673.x

[9] A. Petica, S. Gavriliu, M. Lungu, N. Buruntea, and C. Panzaru, Colloidal silver solutions with antimicrobial properties, Mater. Sci. Eng. B-Advanced Funct. Solid-State Mater., vol. 152, no. 1–3, p.22–27, (2008).

DOI: https://doi.org/10.1016/j.mseb.2008.06.021

[10] K. Malachová, P. Praus, Z. Rybková, and O. Kozák, Antibacterial and antifungal activities of silver, copper and zinc montmorillonites, Appl. Clay Sci., vol. 53, no. 4, p.642–645, (2011).

DOI: https://doi.org/10.1016/j.clay.2011.05.016

[11] A. Tavakoli, M. Sohrabi, and A. Kargari, A review of methods for synthesis of nanostructured metals with emphasis on iron compounds, Chem. Pap., vol. 61, no. 3, p.151–170, (2007).

DOI: https://doi.org/10.2478/s11696-007-0014-7

[12] T. Klaus, R. Joerger, E. Olsson, and C. G. Granqvist, Silver-based crystalline nanoparticles, microbially fabricated, Proc. Natl. Acad. Sci. U. S. A., vol. 96, no. 24, p.13611–13614, (1999).

DOI: https://doi.org/10.1073/pnas.96.24.13611

[13] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, R. Parishcha, P. V Ajaykumar, M. Alam, and R. Kumar, Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis, Nano Lett., vol. 1, no. 10, p.515–519, (2001).

DOI: https://doi.org/10.1021/nl0155274

[14] J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotechnology, vol. 16, no. 10, p.2346, (2005).

DOI: https://doi.org/10.1088/0957-4484/16/10/059

[15] J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho-Bragado, X. Gao, H. H. Lara, and M. J. Yacaman, Interaction of silver nanoparticles with HIV-1, J nanobiotechnol, vol. 3, no. 6, p.1–10, (2005).

DOI: https://doi.org/10.1186/1477-3155-3-6

[16] S. -D. Yoon, M. -H. Park, and H. -S. Byun, Mechanical and water barrier properties of starch/PVA composite films by adding nano-sized poly(methyl methacrylate-co-acrylamide) particles, Carbohydr. Polym., vol. 87, no. 1, p.676–686, (2012).

DOI: https://doi.org/10.1016/j.carbpol.2011.08.046

[17] V. Edwards-Jones, The benefits of silver in hygiene, personal care and healthcare, Lett. Appl. Microbiol., vol. 49, no. 2, p.147–152, (2009).

[18] A. B. G. Lansdown, Critical observations on the neurotoxicity of silver, CRC Crit. Rev. Toxicol., vol. 37, no. 3, p.237–250, (2007).

[19] Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res., vol. 52, no. 4, p.662–668, (2000).

DOI: https://doi.org/10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3

[20] S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr, and A. D. Russell, Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions, Lett. Appl. Microbiol., vol. 25, no. 4, p.279–283, (1997).

DOI: https://doi.org/10.1046/j.1472-765x.1997.00219.x

[21] J. S. Kim, E. Kuk, K. N. Yu, J. -H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, and C. -Y. Hwang, Antimicrobial effects of silver nanoparticles, Nanomedicine Nanotechnology, Biol. Med., vol. 3, no. 1, p.95–101, (2007).

DOI: https://doi.org/10.1016/j.nano.2014.04.007

[22] S. A. Kumar, M. K. Abyaneh, S. W. Gosavi, S. K. Kulkarni, R. Pasricha, A. Ahmad, and M. I. Khan, Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3, Biotechnol. Lett., vol. 29, no. 3, p.439–445, (2007).

DOI: https://doi.org/10.1007/s10529-006-9256-7

[23] R. A. Samson a kol. CBS Laboratory Manual Series 2 - Food and Indoor Fungi, Hardcover, (2010).

[24] P. Hrochová a kol., Treatment of timber by nanofiber fabric with biocide compound, Advanced Materials Research 1000 (2014) 154-157.

DOI: https://doi.org/10.4028/www.scientific.net/amr.1000.154