Electrospun Poly(ε-Caprolactone)/Bovine Hydroxyapatite (BHA) Composite Nanofibers for Bone Tissue Engineering

Abstract:

Article Preview

Tissue engineering applications have opened a different future-promising era for critical injuries, defects and diseases. Bone tissue engineering is the part of tissue engineering which aims to stir up new practical bone re-formation via the interactive combination of biomaterials and cells. Poly (e-caprolactone) (PCL) is a unique semi crystalline polymer material which handles several important features such as biocompatibility, high biomedical durability and degradation properties. Bovine hydroxyapatite (BHA) is another biocompatible material which provides to get ultimate mechanical behavior in composite designs. Because of their high biocompatibility, PCL and BHA were integrated the electrospinning system together. The system was revised for multi-feeding needle equipment. Eight dissimilar tissue scaffolds were produced and investigated for this recent work.

Info:

Periodical:

Main Theme:

Edited by:

Ahmed El-Ghannam

Pages:

228-233

Citation:

M. K. Keler et al., "Electrospun Poly(ε-Caprolactone)/Bovine Hydroxyapatite (BHA) Composite Nanofibers for Bone Tissue Engineering", Key Engineering Materials, Vol. 720, pp. 228-233, 2017

Online since:

November 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] Ficai, D., Ficai, A., Dinu, E., Oprea, O., Sonmez, M., Kagan Keler, M., .. & Gunduz, O. (2015). Magnetic core shell structures: from 0D to 1D assembling. Current pharmaceutical design, 21(37), 5301-5311.

DOI: https://doi.org/10.2174/1381612821666150917093812

[2] M.G. McKee, J.M. Layman, M.P. Cashion, T.E. Long, Phospholipid nonwoven electrospun membranes. Science, 311 (2006) 353-355.

DOI: https://doi.org/10.1126/science.1119790

[3] X. Lu, C. Wang, Y. Wei, One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications. Small 5 (2009) 2349-70.

DOI: https://doi.org/10.1002/smll.200900445

[4] Agarwal, S., Greiner, A., & Wendorff, J. H. (2013). Functional materials by electrospinning of polymers. Progress in Polymer Science, 38(6), 963-991.

DOI: https://doi.org/10.1016/j.progpolymsci.2013.02.001

[5] Gunduz, O., Erkan, E. M., Daglilar, S., Salman, S., Agathopoulos, S., & Oktar, F. N. (2008). Composites of bovine hydroxyapatite (BHA) and ZnO. Journal of Materials Science, 43(8), 2536-2540.

DOI: https://doi.org/10.1007/s10853-008-2497-1

[6] D.G. Yu, C. Branford-White, G.R. Williams, S.W.A. Bligh, K. White, L.M. Zhu, N.P. Chatterton, Self- assembled liposomes from amphiphilic electrospun nanofibers. Soft Matter 7 (2011) 8239-47.

DOI: https://doi.org/10.1039/c1sm05961k

[7] F. Croiser, A. -S. Duwez, C. Jérôme, A.F. Léonard, K. O. van der Werf, P. J. Dijkstra, M.L. Bennink, Mechanial Testing of Electropun PCL Fibers. Acta Biomaterialia 8 (2011) 218-224.

DOI: https://doi.org/10.1016/j.actbio.2011.08.015

[8] Keler, M. K., Daglilar, S., Gunduz, O., Yuksek, M., Sahin, Y. M., Ekren, N.,. & Salman, S. (2016). Mechanical Behavior of PCL Nano Fibers. Key Engineering Materials, 696.

DOI: https://doi.org/10.4028/www.scientific.net/kem.696.196

[9] Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S., & Dumas, P. (2004). FTIR study of polycaprolactone chain organization at interfaces. Journal of colloid and interface science, 273(2), 381-387.

DOI: https://doi.org/10.1016/j.jcis.2004.02.001

[10] Berzina-Cimdina, L., & Borodajenko, N. (2012). Research of calcium phosphates using Fourier transform infrared spectroscopy. INTECH Open Access Publisher.

DOI: https://doi.org/10.5772/36942