Advances in Constitutive Modeling of Plasticity for Forming Applications

Abstract:

Article Preview

A succinct description of advanced constitutive models for applications to forming process simulations is provided. These models are continuum-based because they are more efficient in terms of computation time than microstructure–based models. However, they are so–called advanced because they are considered in many scientific studies but rather scarcely used in industrial applications. In addition, the relationship between these continuum constitutive models and multi-scale approaches based on crystal plasticity, dislocation dynamics and mechanics of multi-phase materials, such as advanced high strength steels, is substantiated.

Info:

Periodical:

Edited by:

Fusahito Yoshida and Hiroshi Hamasaki

Pages:

3-14

Citation:

F. Barlat et al., "Advances in Constitutive Modeling of Plasticity for Forming Applications", Key Engineering Materials, Vol. 725, pp. 3-14, 2017

Online since:

December 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. London A193 (1948) 281–297.

[2] S.S. Hecker, Experimental studies of yield phenomena in biaxially loaded metals, in: A. Stricklin, K.C. Saczalski (Eds. ), Constitutive Modeling in Viscoplasticity, ASME, New-York, 1976, pp.1-33.

[3] T. Kuwabara, Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations, Int. J. Plasticity 23 (2007) 385-419.

DOI: https://doi.org/10.1016/j.ijplas.2006.06.003

[4] J.W.F. Bishop, R. Hill, A theory of the plastic distortion of a polycrystalline aggregate under combined stresses, Phil. Magazine 42 (1951) 414-427.

[5] J.L., Chaboche, Unified cyclic viscoplastic constitutive equations: Development, capabilities, and thermodynamic framework. In: Unified Constitutive Laws of Plastic Deformation, in: A.S. Krausz, K. Krausz, (eds. ), Academic Press, San Diego, 1996, pp.1-68.

DOI: https://doi.org/10.1016/b978-012425970-6/50002-3

[6] F. Yoshida, T. Uemori, A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation, Int. J. Plasticity 18 (2002) 661–686.

DOI: https://doi.org/10.1016/s0749-6419(01)00050-x

[7] M. -G. Lee, D. Kim, C. Kim, M.L. Wenner, R.H. Wagoner, K. Chung, A practical two-surface plasticity model and its application to spring-back prediction, Int. J. Plasticity 23 (2007) 1189-1212.

DOI: https://doi.org/10.1016/j.ijplas.2006.10.011

[8] F. Yoshida, H. Hamasaki, T. Uemori, Modeling of anisotropic hardening of sheet metals including description of the Bauschinger effect, Int. J. Plasticity, 75 (2015) 170-188.

DOI: https://doi.org/10.1016/j.ijplas.2015.02.004

[9] M. Ortiz, E.P. Popov, Distortional hardening rules for metal plasticity, J. Eng. Mech. 109 (1983) 1042–1057.

DOI: https://doi.org/10.1061/(asce)0733-9399(1983)109:4(1042)

[10] F. Barlat, J.J. Gracio, M. -G. Lee, E.F. Rauch, G. Vincze, An alternative to kinematic hardening in classical plasticity, Int. J. Plasticity 27 (2011) 1309–1327.

DOI: https://doi.org/10.1016/j.ijplas.2011.03.003

[11] F. Barlat, J.J. Ha, J.J. Gracio, M-G. Lee, E.F. Rauch, G. Vincze, Extension of homogeneous anisotropic hardening model to cross loading with latent effects, Int. J. Plasticity 46 (2013) 130-142.

DOI: https://doi.org/10.1016/j.ijplas.2012.07.002

[12] F. Barlat, G. Vincze, J.J. Grácio, M. -G. Lee, E.F. Rauch, C. Tomé, Enhancements of homogenous anisotropic hardening model and application to mild and dual-phase steels, Int. J. Plasticity 58 (2014) 201-218.

DOI: https://doi.org/10.1016/j.ijplas.2013.11.002

[13] N. Manopulo, F. Barlat, P. Hora, Isotropic to distortional hardening transition in metal plasticity, Int. J. Solids Structures 56–57 (2015) 11–19.

DOI: https://doi.org/10.1016/j.ijsolstr.2014.12.015

[14] D. Banabic, F. Barlat, O. Cazacu, T. Kuwabara, Advances in Anisotropy and Formability, Int. J. Mat. Forming 3 (2010) 165-189.

DOI: https://doi.org/10.1007/978-2-287-72143-4_9

[15] J.J. Skrzypek, A.W. Ganczarski, Mechanics of Anisotropic Materials, Springer, Cham, Switzerland, (2015).

[16] R. Von Mises, Mechanics der plastischen Formänderung von Kristallen, Z. Ang. Math. Mech. 8 (1928) 161-185.

DOI: https://doi.org/10.1002/zamm.19280080302

[17] F. Yoshida, H. Hamasaki, T. Uemori, A user-friendly 3D yield function to describe anisotropy of steel sheets, Int. J. Plasticity 45 (2013) 119-139.

DOI: https://doi.org/10.1016/j.ijplas.2013.01.010

[18] F. Barlat, D.J. Lege, J.C. Brem, A six-component yield function for anisotropic materials, Int. J. Plasticity 7 (1991) 693-712.

DOI: https://doi.org/10.1016/0749-6419(91)90052-z

[19] A.P. Karafillis, M.C. Boyce, A general anisotropic yield criterion using bounds and a transformation weighting tensor, J. Mech. Phys. Solids 41 (1993) 1859-1886.

DOI: https://doi.org/10.1016/0022-5096(93)90073-o

[20] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S. -H. Choi, E. Chu, E, Plane stress yield function for aluminum alloy sheet-Part I: Theory, Int. J. Plasticity 19 (2003) 1297-1319.

DOI: https://doi.org/10.1016/s0749-6419(02)00019-0

[21] F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem, R.E. Dick, Linear transformation-based anisotropic yield functions, Int. J. Plasticity 21 (2005) 1009–1039.

DOI: https://doi.org/10.1016/j.ijplas.2004.06.004

[22] A.V. Hershey, The plasticity of an isotropic aggregate of anisotropic face centred cubic crystals, J. Appl. Mech. 21 (1954) 241-249.

[23] W.F. Hosford, A generalized isotropic yield criterion, J. Appl. Mech. Trans. 39 (1972) 607–609.

[24] T. Kuwabara, K. Ichikawa, Hole expansion simulation considering the differential hardening of a sheet metal, Romanian. J. Tech. Sci. – Appl. Mechanics 60 (2015) 63-81.

[25] D. Yanaga, T. Kuwabara, N. Uema, M. Asano, Material modeling of 6000 series aluminum alloy sheets with different density cube textures and effect on the accuracy of finite element simulation, Int. J. Solids Structures 49 (2012) 3488-3495.

DOI: https://doi.org/10.1016/j.ijsolstr.2012.03.005

[26] A.H. Van den Boogaard, J. Havinga, A. Belin, F. Barlat, Parameter reduction for the Yld2004-18p yield criterion, Int. J. Material Forming 9 (2016) 175-178.

DOI: https://doi.org/10.1007/s12289-015-1221-3

[27] F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J.C. Brem, Y. Hayashida, D.J. Lege, K. Matsui, S.J. Murtha, S. Hattori, R.C. Becker, S. Makosey, Yield function development for aluminum alloy sheets, J. Mech. Phys. Solids 45 (1997) 1727-1763.

DOI: https://doi.org/10.1016/s0022-5096(97)00034-3

[28] Y. Tozawa, Plastic deformation behavior under conditions of combined stress. In: D.P. Koistinen and N. -M. Wang (Eds. ), Mechanics of Sheet Metal Forming, Plenum Press, New York, 1978, p.81–110.

DOI: https://doi.org/10.1007/978-1-4613-2880-3_4

[29] J.W. Lee, M. -G. Lee, F. Barlat, J.H. Kim, Stress integration schemes for novel homogeneous anisotropic hardening model, Comp. Meth. App. Mech. Engineering 247–248 (2012) 73–92.

DOI: https://doi.org/10.1016/j.cma.2012.07.013

[30] J. Lee, D. Kim, Y.S. Lee, H.J. Bong, F. Barlat, M. -G. Lee, Stress update algorithm for enhanced homogeneous anisotropic hardening model, Computer Meth. Appl. Mech. Engineering 286 (2015) 63-86.

DOI: https://doi.org/10.1016/j.cma.2014.12.016

[31] J.Y. Lee, F. Barlat, M. -G. Lee, Constitutive and friction modeling for accurate springback analysis of advanced high strength steel sheets, Int. J. Plasticity 71 (2015) 113-135.

DOI: https://doi.org/10.1016/j.ijplas.2015.04.005

[32] R.A. Lebensohn, C.N. Tomé, A self-consistent anisotropic approach for the simulation of plasticdeformation and texture development of polycrystals: Application to zirconium alloys, Acta Metall. Mater. 41 (1993) 2611–2624.

DOI: https://doi.org/10.1016/0956-7151(93)90130-k

[33] U.F. Kocks, A statistical theory of flow stress and work-hardening, Phil. Magazine 13 (1966) 541–566.

DOI: https://doi.org/10.1080/14786436608212647

[34] U.F. Kocks, Laws of work-hardening and low-temperature creep, ASME J. Eng. Mater. Technolgy 98 (1976) 76–83.

DOI: https://doi.org/10.1115/1.3443340

[35] E.F. Rauch, J.J. Gracio, F. Barlat, Work-hardening model for polycrystalline metals under strain reversal at large strains, Acta Materialia 55 (2007) 2939-2948.

DOI: https://doi.org/10.1016/j.actamat.2007.01.003

[36] E.F. Rauch, J.J. Gracio, F. Barlat, G. Vincze, Modelling the plastic behaviour of metals under complex loading conditions. Model. Simul. Mat. Sci. Eng. 19 (2011) 035009 (18pp).

DOI: https://doi.org/10.1088/0965-0393/19/3/035009

[37] K. Kitayama, C.N. Tomé, E.F. Rauch, J.J. Gracio, F. Barlat, A crystallographic dislocation model for describing hardening of polycrystals during strain path changes, Application to low carbon steel, Int. J. Plasticity 46 (2013) 54-69.

DOI: https://doi.org/10.1016/j.ijplas.2012.09.004

[38] W. Wen, M. Borodachenkova, C.N. Tomé, G. Vincze, E.F. Rauch, F. Barlat, J.J. Gracio, Mechanical behavior of Mg subjected to strain path changes: experiments and modeling, Int. J. Plasticity 73 (2015) 171-183.

DOI: https://doi.org/10.1016/j.ijplas.2014.10.009

[39] A. Srivastava, H. Ghassemi-Armaki, H. Sung, P. Chen, K. Sharvan, B.F. Allan, Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling, J. Mech. Phys. Solids 78 (2015).

DOI: https://doi.org/10.1016/j.jmps.2015.01.014

[40] Y. Tomota, M. Umemoto, N. Komatsubara, A. Hiramatsu, N. Nakajima, A. Moriya, T. Watanabe, S. Nanba, G. Anan, K. Kunishige, Y. Higo, M. Miyahara, Prediction of mechanical properties of multi-phase steels based on stress-strain curves, ISIJ International 32 (1992).

DOI: https://doi.org/10.2355/isijinternational.32.343

[41] J. Ha, Macro- and mesoscopic finite element analysis of strain path-induced plastic anisotropy evolution in steel sheet, PhD doctoral thesis, POSTECH, Korea (2016).