Multiaxial Fatigue Life Prediction of Metallic Materials Based on Critical Plane Method under Non-Proportional Loading

Abstract:

Article Preview

The critical plane method is widely discussed because of its effectiveness for predicting the multiaxial fatigue life prediction of metallic materials under the non-proportional loading conditions. The aim of the present paper is to give a comparison of the applicability of the critical plane methods on multiaxial fatigue life prediction. A total of 205 multiaxial fatigue test data of nine kinds of metallic materials under various strain paths are adopted for the experimental verification. Results shows that the von Mises effective strain parameter and KBM critical plane parameter can give well predicted fatigue lives for multiaxial proportional loading conditions, but give poor prediction lives evaluation for multiaxial non-proportional loading conditions. However, FS parameter shows better accuracy than the KBM parameter for multiaxial fatigue prediction for both proportional and non-proportional loading conditions.

Info:

Periodical:

Edited by:

Jung Kyu Ahn

Pages:

516-520

DOI:

10.4028/www.scientific.net/KEM.730.516

Citation:

E. N. Zhao and W. L. Qu, "Multiaxial Fatigue Life Prediction of Metallic Materials Based on Critical Plane Method under Non-Proportional Loading", Key Engineering Materials, Vol. 730, pp. 516-520, 2017

Online since:

February 2017

Export:

Price:

$35.00

* - Corresponding Author

[1] A. Karolczuk, E. Macha. A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. Int. J. Fract. 134(3-4) (2005) 267-304.

DOI: 10.1007/s10704-005-1088-2

[2] D. F. Socie, G. B. Marquis. Multiaxial fatigue. Warrendale, PA: SAE; (2000).

[3] J. Li, Z. Zhang, Q. Sun, et al. Multiaxial fatigue life prediction for various metallic materials based on the critical plane approach. Int. J. Fatig. 33(2) (2011) 90-101.

[4] J. W. Hu, Response of Seismically Isolated Steel Frame Buildings with Sustainable Lead-Rubber Bearing (LRB) Isolator Devices Subjected to Near-Fault (NF) Ground Motions. Sustainabil. 7 (2015) 111-137.

DOI: 10.3390/su7010111

[5] J. W. Hu, Investigation on the Cyclic Response of Superelastic Shape Memory Alloy (SMA) Slit Damper Devices Simulated by Quasi-Static Finite Element (FE) Analyses. Mater. 7 (2014) 1122-1141.

DOI: 10.3390/ma7021122

[6] Y. Jiang, O. Hertel, M. Vormwald. An experimental evaluation of three critical plane multiaxial fatigue criteria. Int. J. Fatig. 29(8) (2007) 1490-1502.

DOI: 10.1016/j.ijfatigue.2006.10.028

[7] N. Shamsaei, A. Fatemi. Effect of hardness on multiaxial fatigue behaviour and some simple approximations for steels. Fatig. Fract. Eng. Mater. Struct. 32(8) (2009) 631-646.

DOI: 10.1111/j.1460-2695.2009.01369.x

[8] Y. Jiang, T. Zhao, X. Wang, et al. Multiaxial Fatigue of 16MnR Steel. ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. American Society of Mechanical Engineers, 2006, pp.73-80.

[9] A. Nitta, G. O. Gata, K. K. Kuwabara. Fracture mechanism and life assessment under high-strain biaxial cyclic loading of type 304 stainless steel. Fatig. Fract. Eng. Mater. Struct. 12 (1989) 77–92.

DOI: 10.1111/j.1460-2695.1989.tb00515.x

[10] J. G. Wang, H. Y. Wang, L. Q. Wang, et al. Fatigue life prediction for GH4169 super alloy under multiaxial cyclic loading at 650. J. Mech. Strength, 30(2) (2008) 324-328.

[11] T. W. Zhao, Y. Y. Jiang. Fatigue of 7075-T651 aluminum alloy. Int. J. Fatig. 30 (2008) 834–849.

DOI: 10.1016/j.ijfatigue.2007.07.005

[12] S. Kalluri, P. J. Bonacuse, S. Kalluri. In-phase and out-of-phase axial-torsional fatigue behavior of Haynes 188 at 760 C. Nasa Sti/recon Technical Report N, 1991, 93.

DOI: 10.1520/stp24800s

[13] D. V. Nelson, A. Rostami. Biaxial fatigue of A533B pressure vessel Steel. J. Press. Vess. Tech. 119 (2008) 325–331.

DOI: 10.1115/1.2842312

[14] X. Y. Zhang. Research on multiaxial low-cycle fatigue and life evaluation for Q235 steel. Guangxi University, (2013).

In order to see related information, you need to Login.