Effect of Build Orientation and Post Processing of a Direct Laser Deposited Nickel Superalloy as Determined by the Small Punch Creep Test


Article Preview

Direct Laser Deposition (DLD) is a modern Additive Layer Manufacturing (ALM) technology that offers the possibility of lean manufacture and the ability to produce near-net shape components with complex geometries. Anisotropic microstructures are typically produced due to thermal cycles that occur during the layer by layer process, resulting in epitaxial grains forming along the build direction. Therefore, build direction, whether horizontal (0°) or vertical (90°), may have a pronounced effect upon mechanical properties. While, it is generally accepted that the mechanical properties of cast materials are well understood, the same cannot be said for materials produced using DLD. Although, mechanical testing of materials usually dictates the use of round bar specimens, due to the cost of manufacture and fundamental nature of this study a miniaturised test technique better lends itself to characterise the cast and DLD built alloys’ properties. The Small Punch (SP) creep test is a widely utilised miniaturised test technique for characterising and ranking the creep response of metallic material properties when large quantities may not be readily available. This paper will apply the SP creep test to characterise the properties of DLD variants of the nickel based superalloy C263 in comparison to the traditional cast material. Tests were performed at elevated temperatures akin to those experienced in service. Interpretation of the microstructures and SP creep results has been carried out; relating build direction, microstructures, minimum displacement rate and time to rupture.



Edited by:

Kaishu Guan, Karel Matocha and Tong Xu




S. Jeffs et al., "Effect of Build Orientation and Post Processing of a Direct Laser Deposited Nickel Superalloy as Determined by the Small Punch Creep Test", Key Engineering Materials, Vol. 734, pp. 128-136, 2017

Online since:

April 2017




* - Corresponding Author

[1] D. Pham, R. Gault, A comparison of rapid prototyping technologies, Int. J. Mach. Tools Manuf. 38 (1998) 1257–1287.

[2] W.E. Frazier, Metal additive manufacturing: A review, J. Mater. Eng. Perform. 23 (2014) 1917–1928. doi: 10. 1007/s11665-014-0958-z.

[3] E. Chlebus, B. Kuźnicka, T. Kurzynowski, B. Dybała, Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting, Mater. Character. 62 (2011) 488–495. doi: 10. 1016/j. matchar. 2011. 03. 006.

DOI: https://doi.org/10.1016/j.matchar.2011.03.006

[4] G.P. Dinda, A.K. Dasgupta, J. Mazumder, Texture control during laser deposition of nickel-based superalloy, Scr. Mater. 67 (2012) 503–506. doi: 10. 1016/j. scriptamat. 2012. 06. 014.

DOI: https://doi.org/10.1016/j.scriptamat.2012.06.014

[5] T. Vilaro, C. Colin, J.D. Bartout, L. Nazé, M. Sennour, Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy, Mater. Sci. Eng. A. 534 (2012).

DOI: https://doi.org/10.1016/j.msea.2011.11.092

[6] E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, T. Kurzynowski, Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting, Mater. Sci. Eng. A. 639 (2015).

DOI: https://doi.org/10.1016/j.msea.2015.05.035

[7] T.M. Pollock, S. Tin, Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties, J. Propuls. Power. 22 (2006) 361–374. doi: 10. 2514/1. 18239.

DOI: https://doi.org/10.2514/1.18239

[8] R.C. Reed, C.M.F. Rae, Physical Metallurgy of the Nickel-Based Superalloys, Fifth Edit, Elsevier B.V., (2014). doi: 10. 1016/B978-0-444-53770-6. 00022-8.

[9] Y. -L. Tsai, S. -F. Wang, H. -Y. Bor, Y. -F. Hsu, Effects of alloy elements on microstructure and creep properties of fine-grained nickel-based superalloys at moderate temperatures, Mater. Sci. Eng. A. 571 (2013).

DOI: https://doi.org/10.1016/j.msea.2013.02.002

[10] K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, F. Medina, Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting, Acta Mater. 60 (2012).

DOI: https://doi.org/10.1016/j.actamat.2011.12.032

[11] L.N. Carter, C. Martin, P.J. Withers, M.M. Attallah, The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy, J. Alloys Compd. 615 (2014).

DOI: https://doi.org/10.1016/j.jallcom.2014.06.172

[12] CEN Workshop Agreement CWA 15267, European Code of Practise: Small Punch Test Method for Metallic Materials, (2007).

[13] M.P. Manahan, A.S. Argon, O.K. Harling, The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties, J. Nucl. Mater. 104 (1981) 1545–1550. doi: 10. 1016/0022-3115(82)90820-0.

DOI: https://doi.org/10.1016/0022-3115(82)90820-0

[14] S.P. Jeffs, R.J. Lancaster, T.E. Garcia, Creep lifing methodologies applied to a single crystal superalloy by use of small scale test techniques, Mater. Sci. Eng. A. 636 (2015) 529–535. doi: 10. 1016/j. msea. 2015. 03. 119.

DOI: https://doi.org/10.1016/j.msea.2015.03.119

[15] B. Gülçimen, A. Durmuş, S. Ülkü, R.C. Hurst, K. Turba, P. Hähner, Mechanical characterisation of a P91 weldment by means of small punch fracture testing, Int. J. Press. Vessel. Pip. 105-106 (2013) 28–35. doi: 10. 1016/j. ijpvp. 2013. 02. 005.

DOI: https://doi.org/10.1016/j.ijpvp.2013.02.005

[16] R.J. Lancaster, W.J. Harrison, G. Norton, An analysis of small punch creep behaviour in the γ titanium aluminide Ti–45Al–2Mn–2Nb, Mater. Sci. Eng. A. 626 (2015) 263–274. doi: 10. 1016/j. msea. 2014. 12. 045.

DOI: https://doi.org/10.1016/j.msea.2014.12.045

[17] K. Turba, R.C. Hurst, P. Hähner, Anisotropic mechanical properties of the MA956 ODS steel characterized by the small punch testing technique, J. Nucl. Mater. 428 (2012) 76–81. doi: 10. 1016/j. jnucmat. 2011. 08. 042.

DOI: https://doi.org/10.1016/j.jnucmat.2011.08.042

[18] A. Manonukul, F.P.E. Dunne, D. Knowles, Physically-based model for creep in nickel-base superalloy C263 both above and below the gamma solvus, Acta Mater. 50 (2002) 2917–2931. doi: 10. 1016/S1359-6454(02)00119-2.

DOI: https://doi.org/10.1016/s1359-6454(02)00119-2

[19] A. Manonukul, F.P.E. Dunne, D. Knowles, S. Williams, Multiaxial creep and cyclic plasticity in nickel-base superalloy C263, Int. J. Plast. 21 (2005) 1–20. doi: 10. 1016/j. ijplas. 2003. 12. 005.

DOI: https://doi.org/10.1016/j.ijplas.2003.12.005

[20] R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, USA, (2006).

[21] K. Kunze, T. Etter, J. Grässlin, V. Shklover, Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM), Mater. Sci. Eng. A. 620 (2015).

DOI: https://doi.org/10.1016/j.msea.2014.10.003

[22] F. Dobeš, K. Milicka, On the Monkman – Grant relation for small punch test data, Mater. Sci. Eng. A. 336 (2002) 245–248.

DOI: https://doi.org/10.1016/s0921-5093(01)01975-x

Fetching data from Crossref.
This may take some time to load.