CATPUAL - An Innovative and High-Performance Hybrid Laminate with Carbon Fibre-Reinforced Thermoplastic Polyurethane


Article Preview

In consideration of environmental aspects and limited availability of resources, the focus of automotive and aerospace industry lies on significant weight optimisations especially for moving loads. In this context, innovative lightweight materials as well as material combinations need to be developed. A considerable potential for lightweight structures can be found in fibre- or textile-reinforced semi-finished products. Due to their specific characteristics and extraordinary structural diversity, thermoset and thermoplastic matrix systems can be used. In particular, carbon fibres as reinforcing components combined with a thermoplastic matrix polymer are able to create new high-performance applications. Besides the significant lightweight characteristics of the fibre-plastic-composites, in some instances contrary requirements must be satisfied in many areas, such as strength and ductility. In this field, the combination of fibre-reinforced polymers with aluminium or titanium sheets creates unique composite materials, so called hybrid laminates, which fulfil the unusual expectations.The focus of the current study lies on the development of a new thermoplastic hybrid laminate named CATPUAL (CArbon fibre-reinforced Thermoplastic PolyUrethane/ALuminium laminate). The structure of the laminate is an alternating sequence of thin aluminium sheets (EN AW 6082-T4) and fibre-reinforced thermoplastic polyurethane (TPU). The individual layers are consolidated to each other by using a hot pressing process. First results showed that the impregnation capability of thermoplastic polyurethane surpasses any other commercially available hybrid laminates. Furthermore, the mechanical properties regarding bending strength and interlaminar shear strength are exceeding the state of the art drastically.



Edited by:

Prof. Axel S. Herrmann




C. Zopp et al., "CATPUAL - An Innovative and High-Performance Hybrid Laminate with Carbon Fibre-Reinforced Thermoplastic Polyurethane", Key Engineering Materials, Vol. 742, pp. 294-301, 2017

Online since:

July 2017




* - Corresponding Author

[1] Borchard-Tuch, C.: Neue Werkstoffe für den Airbus A 380, Chemie in unserer Zeit. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2006) 40, 407–409.


[2] Nestler, D.; Jung, H.; Trautmann, M.; Wagner, G.: Schichtverbunde der Zukunft. Funktionalisierte hybride Laminate auf Thermoplastbasis. Lightweight Design, 04 (2015), 20–25, ISSN 1865-4819.


[3] Wielage, B.; Nestler, D.; Jung, H.; Kroll, L.; Tröltzsch, J.; Nendel, S.: CAPAAL and CAPET - New materials of high-strength, high-stiff hybrid laminates. Integrated Systems, Design and Technology 2010, Hrsg. Fathi, Madjid, Springer Verlag Berlin, (2011).


[4] Nestler, D.; Jung, H.; Wielage, B.; Nendel, S.; Tröltzsch, J.; Kroll, L.: Innovative Hochleistungs-Hybridlaminate mit variablen Faserkomponenten. 19. Symposium Verbundwerkstoffe und Werkstoffverbunde, Karlsruhe 2015, Proceedings (2013).

[5] Nestler, D.; Jung, H.; Arnold, S.; Wielage, B.; Nendel, S.; Kroll, L.: Thermoplastische Hybridlaminate mit variabler Metallkomponente. Mat. -wiss. u. Werkstoff-tech. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 45 (2014).


[6] Abdullah, M.R.; Cantwell, W.J.: The impact resistance of polypropylene-based fibre-metal laminates. Composite Science and Technology 66 (2006), 1682–1693.


[7] N.N.: Celstran® CFR-TP Thermoplastic Composites. Produktinformation Celanese, (2013).

[8] N.N.: UltracomTM – thermoplastische Verbundwerkstoffe mit System. Produktinformation BASF, (2013).

[9] Zopp, C.; Stenbeck, W.; Schultze, D.; Kroll, L., Nendel, S.; Nestler, D.: Carbon Fibre-reinforced thermoplastic semi-finished products for high performance applications. 2nd International MERGE Technologies Conference, IMTC 2015, Lightweight Structures, Proceedings, Verlag wiss. Scripten, Auerbach, (2015).


[10] Stenbeck, W.; Schultze, D.; Kroll, L.; Nendel, S.; Nestler, D.; Zopp, C.: Bereit für die Großserie - Organobleche aus thermoplastischen Polyurethan mit Kohlenstoff-Endlosfaserverstärkung. Kunststoffe 08/2016, Carl Hanser Verlag, München, (2016).

[11] Heinrich, H. -J.; Grünert, J.; Kausch, M.; Kroll, L.: Thermoplastische Prepregs für den Hochleistungsbereich. Hrsg. Meynerts, P. 12. Chemnitzer Textiltechnik-Tagung. Chemnitz, TU Chemnitz, (2009) 250–256.

[12] Heinrich, H. -J.: Ce-Preg®-ein Produktspektrum neuer faserverstärkter thermoplastischer Hochleistungswerkstoffe. Cetex Institut für Textil- und Verarbeitungsmaschinen gemeinnützige GmbH, Produktinformation, (2010).

[13] Wu, G.; Yang, J. -M.: The Mechanical Behaviour of GLARE Laminates for Aircraft Structures. JOM, 57, (2005) 72–79.


[14] Nendel, S.; Heinrich, H. -J.: Basaltfaserverstärkte thermoplastische Strukturbauteile für Hochleistungsanwendungen. 14. Chemnitzer Textiltechnik-Tagung. Chemnitz, TU Chemnitz, (2014) 144–150.

[15] Zopp, C.; Kroll, L; Trautmann, M.; Nestler, D.: Einfluss der natürlichen Freibewitterung und des VDA-Klimawechseltestes auf die mechanischen Eigenschaften thermoplastbasierter hybrider Laminate, Tagungsband zum 18. Werkstofftechnischen Kolloquium, Schriftenreihe Werkstoffe und werkstofftechnische Anwendungen, 59 (2016).

Fetching data from Crossref.
This may take some time to load.