Processing of Carbon Nanotubes and Carbon Nanofibers towards High Performance Carbon Fiber Reinforced Polymers

Abstract:

Article Preview

Carbon fiber reinforced polymers (CFRPs) are promising composite materials for high-performance and lightweight applications, gaining increasing interest in aerospace and automotive industries. Epoxy thermosets are frequently used as polymer matrices of CFRPs, which are usually responsible for failure of the composite. In this work different types of carbon nanotubes (CNTs) and carbon nanofibers (CNF) are added to the epoxy resin to improve mechanical properties of the whole CFRP composite. The dispersion of the fillers on a three-roll mill (TRM) is shown comparing their dispersion behavior in the resin. Results of increased modulus and strength of the hierarchical composite in four-point bending tests are presented.

Info:

Periodical:

Edited by:

Prof. Axel S. Herrmann

Pages:

31-37

Citation:

G. Singer et al., "Processing of Carbon Nanotubes and Carbon Nanofibers towards High Performance Carbon Fiber Reinforced Polymers", Key Engineering Materials, Vol. 742, pp. 31-37, 2017

Online since:

July 2017

Export:

Price:

$41.00

* - Corresponding Author

[1] P.E. Irving, C. Soutis, Polymer composites in the aerospace industry, Elsevier Ltd., Cambridge, (2015).

[2] L.E. Crocker, S.L. Ogin, P.A. Smith, P.S. Hill, Intra-laminar fracture in angle-ply laminates, Comp. Part A 28 (1997) 839-846.

DOI: https://doi.org/10.1016/s1359-835x(97)00036-5

[3] N. Balhi, V. Vrellos, B.W. Drinkwater, F.J. Guild, S.L. Ogin, P.A. Smith, Intra-laminar cracking in CFRP laminates: observations and modelling, J. Mater. Sci. 41 (2006) 6599-6609.

DOI: https://doi.org/10.1007/s10853-006-0199-0

[4] M. Cadek, J.N. Coleman, V. Barron, Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites, Appl. Phys. Lett. 81 (2002) 5123-5125.

DOI: https://doi.org/10.1063/1.1533118

[5] F.H. Gojny, M.H.G. Wichmann, B. Fiedler, K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study, Composites Science and Technology 65 (2005) 2300–2313.

DOI: https://doi.org/10.1016/j.compscitech.2005.04.021

[6] E.S. Choi, J.S. Brooks, D.L. Eaton, M. S. Al-Haik, M. Y. Hussaini, H. Garmestani, D. Li, K. Dahmen, Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing, J. Appl. Phys. 94 (2003).

DOI: https://doi.org/10.1063/1.1616638

[7] M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, Carbon nanotube composites for thermal management, Appl. Phys. Lett. 80 (2002) 2767-2769.

DOI: https://doi.org/10.1063/1.1469696

[8] S. Wang, R. Liang, B. Wang, C. Zhang, Load-transfer in functionalized carbon nanotubes/polymer composites, Chem. Phys. Lett. 457 (2008) 371–375.

DOI: https://doi.org/10.1016/j.cplett.2008.04.037

[9] P.C. Ma, Q.B. Zheng, E. Mäder, J.K. Kim, Behavior of load transfer in functionalized carbon nanotube/epoxy nanocomposites, Polymer 53 (2012) 6081-6088.

DOI: https://doi.org/10.1016/j.polymer.2012.10.053

[10] P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Dispersion and functionalization of carbon nanotubes for polymer nanocomposites: A review, Comp. Part A 41 (2010) 1345-1367.

[11] Information on http: /www. nanocyl. com/wp-content/uploads/2016/07/DM-TI-02-TDS-NC7000-V08. pdf (Jan 2017).

[12] Information on http: /www. nanocyl. com/wp-content/uploads/2016/02/Technical-Data-Sheet-NC3152-V01. pdf (Jan 2017).

[13] Information on http: /www. sigmaaldrich. com/technical-documents/articles/materials-science/nanomaterials/carbon-nanofibers. html.

[14] C.M. White, R. Banks, I. Hamerton, J.F. Watts, Characterisation of commercially CVD grown multi-walled carbon nanotubes for paint applications, Progress in Organic Coatings 90 (2016) 44-53.

DOI: https://doi.org/10.1016/j.porgcoat.2015.09.020

[15] A. Jiménez-Suárez, M. Campo, M. Sánchez, C. Romón, A. Ureña, Influence of the functionalization of carbon nanotubes on calendaring dispersion effectiveness in a low viscosity resin for VARIM processes, Composites: Part B 43 (2012) 3482–3490.

DOI: https://doi.org/10.1016/j.compositesb.2011.12.009

[16] Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, Progress in Polymer Science 35 (2010) 357–401.

DOI: https://doi.org/10.1016/j.progpolymsci.2009.09.003

[17] C.A. Cooper, S.R. Cohen, A.H. Barber, H.D. Wagner, Detachment of nanotubes from a polymer matrix, Appl. Phys. Lett. 81 (2002) 3873-3875.

DOI: https://doi.org/10.1063/1.1521585

[18] S. Wang, R. Liang, B. Wang, C. Zhang, Load-transfer in functionalized carbon nanotubes/polymer composites, Chemical Physics Letters 457 (2008) 371–375.

DOI: https://doi.org/10.1016/j.cplett.2008.04.037

[19] R.M. Wang, S.R. Zheng, Y.P. Zheng, Polymer matrix composites and technology, Woodhead Publishing Limited, Cambridge, (2011).

[20] M.F. Yu, O. Lourie, M.J. Dyer, K. Molomi, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287 (2000) 637-640.

DOI: https://doi.org/10.1126/science.287.5453.637

[21] T. Ozkan, M. Naraghi, I. Chasiotis, Mechanical properties of vapor grown carbon nanofibers, Carbon 48 (2010) 239–244.

DOI: https://doi.org/10.1016/j.carbon.2009.09.011