Bioabsorbable Anchors for Medial Patellofemoral Ligament Reconstruction

Abstract:

Article Preview

Acute dislocation of the patella is a very common injury of the knee. In more than 90% of the cases the medial patellofemoral ligament (MPFL) is injured. Reconstruction of the MPFL has become a popular soft tissue procedure, which reduces hospitalization and the rehabilitation period. Bioabsorbable materials, in form of screws and anchors are ideal for soft fixation to bones in orthopedics. We would like to present our experience and short-term results after MPFL reconstruction with semitendinous autograft and bioabsorbable fixation devices. 10 patients were involved in this study with PF joint instability, who underwent to MPFL reconstruction. In order to evaluate the functional outcome of the procedure we applied the Tegner Lysholm scoring system before and after 3 Months of surgery. MPFL reconstruction significantly improved the functionality of the PF joint. Gender distribution of the studied group was: 7 female with an average age of 25 5,03 SD and 3 male patients with an average age of 29 1 SD. The key for the success in MPFL reconstruction is the positioning of the femoral tunnel, followed by an isometric tensioning of the graft. Bioabsorbable materials reduce inflammatory, and foreign body response facilitating biointegration of the autograft.

Info:

Periodical:

Edited by:

Prof. Iulian Antoniac and Cirstoiu Catalin

Pages:

101-110

DOI:

10.4028/www.scientific.net/KEM.745.101

Citation:

R. Ene et al., "Bioabsorbable Anchors for Medial Patellofemoral Ligament Reconstruction", Key Engineering Materials, Vol. 745, pp. 101-110, 2017

Online since:

July 2017

Export:

Price:

$38.00

* - Corresponding Author

[1] A.C. Colvin, R.V. West, Patellar instability, J Bone Joint Surg Am, 90(12), (2008) 2751-2762.

[2] J. Reagan, R. Kullar, R. Burks, MPFL reconstruction: technique and results, Clin Sports Med.  33(3), (2014) 501-516.

DOI: 10.1016/j.csm.2014.03.006

[3] P. Guerrero, X. Li, K. Patel, M. Brown, B. Busconi, Medial patellofemoral ligament injury patterns and associated pathology in lateral patella dislocation: an MRI study, SMARTT, (2009) 1-17.

DOI: 10.1186/1758-2555-1-17

[4] N.R. Howells, J.D. Eldridge, Medial patellofemoral ligament reconstruction for patellar instability in patients with hypermobility: A case control study, J Bone Joint Surg Br, 94(12) (2012) 1655-1659.

DOI: 10.1302/0301-620x.94b12.29562

[5] S.M. Desio, R.T. Burks, K.N. Bachus, Soft Tissue Restraints to Lateral Patellar Translation in the Human Knee, Am J Sports Med, 26 (1998) 59-65.

DOI: 10.1177/03635465980260012701

[6] Philip Schoettle, A. Schmeling, J. Romero, A. Weiler, Anatomical reconstruction of the medial patellofemoral ligament using a free gracilis autograft, Arch Orthop Trauma Surg, 129 (2009) 305-309.

DOI: 10.1007/s00402-008-0712-9

[7] P.B. Schöttle , D. Hensler , A.B. Imhoff, Anatomical double-bundle MPFL reconstruction with an aperture fixation, Knee Surg Sports Traumatol Arthrosc, (18)2, (2010) 147-151.

DOI: 10.1007/s00167-009-0868-z

[8] I. Antoniac, Biologically responsive biomaterials for tissue engineering, Springer (2013), 107-136.

[9] I.C. Stancu; D.M. Dragusin; E. Vasile; R. Trusca; I. Antoniac; D.S. Vasilescu, Porous calcium alginate-gelatin interpenetrated matrix and its biomineralization potential, Journal Of Materials Science: Materials In Medicine, (22) 3, ( 2011) 451-460.

DOI: 10.1007/s10856-011-4233-7

[10] E. Rusen, Mocanu A, B. Marculescu, R. Somoghi, L, Butac, F. Miculescu, C. Cotrut, I. Antoniac, C. Cincu, Obtaining complex structures starting from monodisperse poly(styrene-co-2-hydroxyethylmethacrylate) spheres, Colloids And Surfaces A: Physicochemical And Engineering Aspects, 375 (2011).

DOI: 10.1016/j.colsurfa.2010.11.034

[11] T. Zecheru, T. Rotariu, E. Rusen, B. Marculescu, F. Miculescu, L. Alexandrescu, I. Antoniac, I.C. Stancu, Poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid): synthesis, physico-chemical characterisation and nafcillin carrier, Journal Of Materials Science: Materials In Medicine, (21)10, (2010).

DOI: 10.1007/s10856-010-4129-y

[12] I. Antoniac, Biodegradability of some collagen sponges reinforced with different bioceramics, Key Engineering Materials, (587), (2014) 179-184.

DOI: 10.4028/www.scientific.net/kem.587.179

[13] I. Titorencu, M.G. Albu, M. Giurginca, V. Jinga, I. Antoniac, V. Trandafir, C. Cotrut, F. Miculescu, M, Simionescu, In vitro biocompatibility of human endothelial cells with collagen-doxycycline matrices, Molecular Crystals And Liquid Crystals, 523 (2010).

DOI: 10.1080/15421401003724126

[14] I. Antoniac, Handbook of Bioceramics and Biocomposites, Springer International Publishing, ISBN: 978-3-319-12459-9, (2016) 935-967.

[15] J.V. Rau, I. Antoniac, G. Cama, V.S. Komlev, A. Ravaglioli, Bioactive Materials for Bone Tissue Engineering, Biomed Research International, 3741428 (2016) 1-4.

DOI: 10.1155/2016/3741428

[16] M.C. Corobea, O. Muhulet, F. Miculescu, I.V. Antoniac, Z. Vuluga, D. Florea, D.M. Vuluga, M. Butnaru, D. Ivanov, S.I. Voicu, V.K. Thakur, Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires, Polymers For Advanced Technologies, (27)12, (2016).

DOI: 10.1002/pat.3835

[17] A.I. Bita, A. Antoniac, C. Cotrut, E. Vasile, I. Ciuca, M. Niculescu, I. Antoniac, In vitro Degradation and Corrosion Evaluation of Mg-Ca Alloys for Biomedical Applications, JOAM, 18(3-4), (2016) 394-398.

DOI: 10.1080/01694243.2016.1171569

[18] A.I. Bita, G. E Stan,  M. Niculescu,  I. Ciuca, E. Vasile,  I. Antoniac, Adhesion evaluation of different bioceramic coatings on Mg-Ca alloys for biomedical applications, J Adhesion Sci Tech, (30)18, (2016) 1968-(1983).

DOI: 10.1080/01694243.2016.1171569

[19] D. Laptoiu, R. Marinescu, C. Balan, I. Antoniac, Rheologic properties of some current hyaluronic acid products for viscosupplimentation-new trends for amelioration, Materiale Plastice, 52(4), (2015) 500-503.

[20] T. Petreus, B.A. Stoica, O. Petreus, A. Goriuc, C.E. Cotrut, I.V. Antoniac, L. Barbu-Tudoran, Preparation and cytocompatibility evaluation for hydrosoluble phosphorous acid-derivatized cellulose as tissue engineering scaffold material, J Mater Sci Mater Med, 25(4), (2014).

DOI: 10.1007/s10856-014-5146-z

[21] P. Carbonell-Blasco, J.M. Martín-Martínez, I. Antoniac, Synthesis and characterization of polyurethane sealants containing rosin intended for sealing defect in annulus for disc regeneration, Int J Adhes Adhes, 42 (2013) 11-20.

DOI: 10.1016/j.ijadhadh.2012.11.011

[22] I. Antoniac, M.D. Vranceanu, A. Antoniac, The influence of the magnesium powder used as reinforcement material on the properties of some collagen based composite biomaterials, JOAM, 15 (7-8), (2013) 667-672.

[23] M.D. Vranceanu, I. Antoniac, F. Miculescu, R. Saban, The influence of the ceramic phase on the porosity of some biocomposites with collagen matrix used as bone substitutes, JOAM, 14(7-8), (2012) 671–677.

[24] I. Antoniac, M. Miculescu, M. Dinu, Metallurgical characterization of some magnesium alloys for medical applications, Solid State Phenomena, 188 (2012) 109-113.

DOI: 10.4028/www.scientific.net/ssp.188.109

[25] M. Niculescu, I. Antoniac, A. Blajan, Metallic biomaterials processing technologies in order to obtain a new design for a hip prosthesis femoral component, Solid State Phenomena, 216 (2014) 239-242.

DOI: 10.4028/www.scientific.net/ssp.216.239

[26] I. Antoniac, G. Lesci, A. Blajan, G. Vitioanu, A. Antoniac, Bioceramics and biocomposites from marine sources, Key Engineering Materials, 672 (2015) 276-292.

DOI: 10.4028/www.scientific.net/kem.672.276

[27] R. Marinescu, D. Laptoiu, C. Socoliuc, I. Antoniac, Pretibial cyst formation in ACL reconstruction - A case report, Key Engineering Materials, 695 (2016) 111-117.

DOI: 10.4028/www.scientific.net/kem.695.111

[28] E. Razvan, M. Nica, Z. Panti, M. Pleniceanu, P. Ene, M. Cirstoiu, I. Antoniac, C. Cirstoiu, Fixation system design in ipsilateral proximal femur and diaphyseal fractures in elderly patients, Key Engineering Materials 695 (2016) 106-110.

DOI: 10.4028/www.scientific.net/kem.695.106

[29] I. Antoniac, C. Sinescu, A. Antoniac, Adhesion aspects in biomaterials and medical devices, J Adhesion Sci Tech, 30(16), (2016) 1711-1715.

DOI: 10.1080/01694243.2016.1170959

[30] F. Miculescu, D. Bojin, L.T. Ciocan, I. Antoniac, M. Miculescu, N. Miculescu, Experimental researches on biomaterial-tissue interface interactions, JOAM, 9(11), (20073) 303–306.

DOI: 10.4028/www.scientific.net/kem.638.14

[31] R. Marinescu, I. Antoniac, D. Laptoiu, A. Antoniac, D. Grecu, Complications Related to Biocomposite Screw Fixation in ACL Reconstruction Based on Clinical Experience and Retrieval Analysis, Materiale Plastice (52) 3 (2015) 340-344.

DOI: 10.1007/978-3-319-09230-0_43-1

[32] N.J. Gunja, K.A. Athanasiou, Biodegradable materials in arthroscopy, Sports Arthrosc (14)3 (2006) 112-119.

DOI: 10.1097/00132585-200609000-00002

[33] S.M. Kurtz, J.N. Devine, PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants, Biomaterials, (28)32, (2007) 4845–4869.

DOI: 10.1016/j.biomaterials.2007.07.013

[34] Y. Tegner, J. Lysholm, Rating systems in the evaluation of knee ligament injuries, Clin Orthop Relat Res, 198 (1985) 43-49.

[35] G.L. Camanho, A.C. Bitar, A.J. Hernandez, R. Olivi, Medial patellofemoral ligament reconstruction: a novel technique using the patellar ligament, Arthroscopy, 23(1), (2007) 108. e1-4.

DOI: 10.1016/j.arthro.2006.07.008

[36] S.A. Brown, R.S. Hastings, J.J. Mason et al., Characterization of short-fibre reinforced thermoplastics for fracture fixation devices, Biomaterials, 11(8), (1990) 541–547.

DOI: 10.1016/0142-9612(90)90075-2

[37] D. Williams, A. McNamara, R. Turner, Potential of polyetheretherketone (PEEK) and carbon-fibre-reinforced PEEK in medical applications, J Mater Sci Lett, 6(2), (1987) 188–190.

DOI: 10.1007/bf01728981

[38] L.M. Wenz, K. Merritt, S.A. Brown et al, In vitro biocompatibility of polyetheretherketone and polysulfone composites, J Biomed Mater Res, (24)2, (1990) 207–215.

DOI: 10.1002/jbm.820240207

[39] P.G. Ntagiopoulos, G. Demey, T. Tavernier et al, Comparison of resorption and remodeling of bioabsorbable interference screws in anterior cruciate ligament reconstruction, IntOrthop, (39)4, (2015) 697–706.

DOI: 10.1007/s00264-014-2530-8

[40] A. Adamus, J. Jozwiakowska, R. Wach, et al, In vitro degradation of β-Tricalcium phosphate reinforced poly (L-Lactic Acid), Mater Sci Forum, 714 (2012) 283–290.

DOI: 10.4028/www.scientific.net/msf.714.283

[41] R. Mittal, J. Morley, H. Dinopoulos et al., Use of bio-resorbable implants for stabilization of distal radius fractures: the United Kingdom patients' perspective, Injury, (36)2, (2005) 333–338.

DOI: 10.1016/j.injury.2004.09.015

[42] C. R. Bottoni, D.E. Brooks, T. M. DeBerardino, B. D. Owens, K. L. Judson, J. S. Eggers, M. Z. Mays, A Comparison of Bioabsorbable and Metallic Suture Anchors in a Dynamically Loaded, Intra-articular Caprine Model, Orthopedics (31)11, (2008) 1-7.

[43] A.A. Schepsis , A.J. Rogers, Medial patellofemoral ligament reconstruction: indications and technique, (20)3, (2012) 162-170.

DOI: 10.1097/jsa.0b013e318264188b

[44] E. Servien, B. Fritsch, S. Lustig, G. Demey, R. Debarge, C. Lapra, P. Neyret, In vivo positioning analysis of medial patellofemoral ligament reconstruction, Am J Sports Med (39)1, (2011) 134-139.

DOI: 10.1177/0363546510381362

[45] P. Schottle, A. Schmeling, J. Romero, A. Weiler, Anatomical reconstruction of the medial patellofemoral ligament using a free gracilis autograft, Arch Orthop Trauma Surg (129)3, (2009) 305-309.

DOI: 10.1007/s00402-008-0712-9

[46] P. Beck, N.A. Brown, P.E. Greis, R.T. Burks, Patellofemoral contact pressures and lateral patellar translation after medial patellofemoral ligament reconstruction, Am J Sports Med, 35(9), (2007) 1557-1563.

DOI: 10.1177/0363546507300872

[47] M. McCarthy, T.J. Ridley, M. Bollier, B. Wolf, J. Albright, A. Amendola, Femoral Tunnel Placement In Medial Patellofemoral Ligament Reconstruction, The Iowa Orthopaedic Journal, 33 (2013) 58-63.

In order to see related information, you need to Login.