Bioinert Ceramics: State-of-the-Art

Abstract:

Article Preview

Bioinert ceramics in use today are the result of more than 60 years of continuous development. Early studies were concentrated on alumina that in the late 1960s was the most advanced ceramic, and on pyrolytic carbon. After tests in orthopedic bearings, pyrolytic carbon found clinical applications in artificial heart valves, where it is in clinical use so far. After 1970 zirconia-toughened ceramics (YTZP, ZTA, ATZ) were investigated in view of their use as biomaterials in orthopedics. Especially the introduction of YTZP in clinics in the 1990s gave a new momentum to the use of inert bioceramics. So far, zirconia-toughened ceramics are replacing alumina because of their outstanding mechanical properties leading to high reliability in ceramic components. The behavior of ZTAs and ATZs are exploited in several innovative devices. Especially metal-free devices are of interest, because of the increasing number of patients sensitized to metals. Using zirconia-toughened ceramics were achieved remarkable development in ceramic knee replacements, a field pioneered by Japanese researchers, because the behavior of these materials allow the production of devices similar in size to the metallic ones. In dentistry, a number of manufacturers are marketing metal-free dental implants, as well as machinable zirconia blanks for the production of crowns, bridges, copings by CAD/CAM. Besides oxides, that in todays’ orthopedics and dentistry are the state-of-the-art bioinert ceramics, silicon nitride has found application in spinal surgery, and investigations in view of its use in joint replacement bearings are in progress.

Info:

Periodical:

Main Theme:

Edited by:

Christian Rey, Christèle Combes and Christophe Drouet

Pages:

3-13

Citation:

C. Piconi, "Bioinert Ceramics: State-of-the-Art", Key Engineering Materials, Vol. 758, pp. 3-13, 2017

Online since:

November 2017

Authors:

Export:

Price:

$38.00

* - Corresponding Author

[1] L.L. Hench, E.C. Etheridge, Biomaterials: an Interfacial Approach, Academic, New York, (1982).

[2] Rock, German Patent DRP 583, 589. (1933).

[3] S. Sandhaus, Noveaux aspects de l'implantologie, Sandhaus, , Lausanne, (1969).

[4] L.W. Smith, Ceramic-plastic material as a bone substitute, Clin Orthop 282 (1992) 4-9.

[5] J.C. Bokros, Carbon in medical devices, in: P. Vincenzini (Ed. ) Ceramics in Surgery, Elsevier, Amsterdam, 1983, pp.199-214.

[6] V.L. Gott, D.E. Alejo, D.E. Cameron, Mechanical heart valves: 50 years of evolution, Ann Thorac Surg 76(2003)S2230-39.

DOI: https://doi.org/10.1016/j.athoracsur.2003.09.002

[7] M. Vila, Carbon-based Materials in Biomedicine, in: M. Vallet-Regi (Ed. ) Bio-Ceramics with Clinical Applications, Wiley, Chichester, 2014, pp.175-192.

DOI: https://doi.org/10.1002/9781118406748.ch7

[8] P. Boutin, Arthroplastie totale de la hanche par prostheses en alumine fritté, Rev Chir Orthop 58 (1972) 230-246.

[9] W. Shulte, The FRIALIT Tübingen implant system, in: G. Heimke (Ed. ) Osseo-integrated Implants, Vol 1, CRC Press, Boca Raton, 1990, pp.1-35.

[10] J.T. Chess, C.A. Babbush, Restoration of lost dentition using aluminum oxide endosteal implants, Dent Clin North Am 24 (1980) 521-533.

[11] T. Takahashi, T. Sato, R. Hisanaga, et al., Long-term observation of porous sapphire dental implants, Bull Tokyo Dent Coll 49 (2008) 23-27.

DOI: https://doi.org/10.2209/tdcpublication.49.23

[12] G. Langer, S. Blumentritt, Our ceramic endoprostheses programme – investigations and results, in: P. Vincenzini (Ed. ) Ceramics in clinical applications, Elsevier, Amsterdam, 1987, pp.313-319.

[13] G. Langer, Ceramic tibial plateau of the 70s, in: J.P. Garino, G. Willmann (Eds), Bioceramics in joint arthroplasty, Thieme, Stuttgart, 2002, pp.128-130.

[14] C. Piconi, Alumina, in: P. Ducheyne, K.E. Healey, D.W. Hutmacher, D.W. Grainger, C.J. Kirkpatrick (Eds. ) Comprehensive Biomaterials, vol 1, Elsevier, New York, 2011, pp.73-94.

[15] C. Piconi, A.A. Porporati, Bioinert Ceramics: Zirconia and Alumina, in: I. Antoniac (Ed. ) Handbook of Bioceramics and Biocomposites, Vol. 1, Springer, Berlin, 2016, pp.59-90.

DOI: https://doi.org/10.1007/978-3-319-12460-5_4

[16] Blaise L, Webb J, Calés B, Mechanical analysis of a knee prosthesis with a zirconia femoral component. Orthop Proc 84-B(2002)14.

[17] C. Piconi, G. Maccauro, M. Angeloni, B. Rossi, I.D. Learmonth, Zirconia heads in perspective: a survey of zirconia outcomes in total hip replacement, Hip Int 17 (2007) 119-130.

DOI: https://doi.org/10.5301/hip.2008.2496

[18] R.H.J. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia containing ceramics, J Am Ceram Soc 83(2000)461-87.

[19] M. Hirano, Inhibition of Low Temperature Degradation of tetragonal zirconia ceramics, Br Ceram Trans 91(1992)139-147.

[20] T. Sato, M. Shimada, Control of the tetragonal-to-monoclinic phase transformation of yttria partially stabilized zirconia in hot water. J Mater Sci 20(1985)3899-992.

DOI: https://doi.org/10.1007/bf00552389

[21] M. Yoshimura, T. Noma, K. Kawabata, S. Somiya, Role of H2O on the degradation process of Y-TZP, J Mater Sci Lett 6(1987)465-7.

DOI: https://doi.org/10.1007/bf01756800

[22] J. Chevalier, B. Cales, J.M. Drouin, Low-temperature ageing of Y-TZP ceramics, J Am Ceram Soc 82(1999)2150-4.

[23] S. Lawson, Environmental degradation of zirconia ceramics. J Eur Ceram Soc 15(1995)485-502.

[24] J. Chevalier, L. Gremillard, S. Deville. Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants. Annu Rev Mater Res 37(2007)1–32.

DOI: https://doi.org/10.1146/annurev.matsci.37.052506.084250

[25] V. Lughi, V. Sergo, Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater 26(2010)807–20.

DOI: https://doi.org/10.1016/j.dental.2010.04.006

[26] F. Zhang, M. Batuk, J. Hadermann, et al. Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: Grain boundary segregation and oxygen vacancy annihilation. Acta Materialia 106(2016)48-58.

DOI: https://doi.org/10.1016/j.actamat.2015.12.051

[27] C. Piconi, G. Maccauro, L. Pilloni, W. Burger, F. Muratori, H.G. Richter, On the fracture of a zirconia ball head, J Mater Sci Mater Med 17 (2006) 289-300.

DOI: https://doi.org/10.1007/s10856-006-7316-0

[28] K. Kawata, T. Ohmura, I. Kawahara, K. Tamai, T. Ueha, K. Takemura . Differences in highly cross-linked wear between zirconia and cobalt-chromium femoral heads in Japanese patients. J Arthroplasty 24(2009) 1121-24.

DOI: https://doi.org/10.1016/j.arth.2009.05.023

[29] M. Hasegawa, A. Sudo. In vivo performance of highly cross-linked polyethylene vs. yttria stabilized zirconia and alumina stabilized zirconia at a mean seven-years follow-up. BMC Muscoloskeletal Disorders 14(2013) 154.

DOI: https://doi.org/10.1186/1471-2474-14-154

[30] M. Sonohata, M. Kitajima, S. Kawaro, M. Mawatari. Wear of XLPE liner against zirconium heads in cementless total hip arthroplasty for patients under 40 years of age. Hip Int 2017, in press. DOI: 10. 5301/hipint. 5000513.

DOI: https://doi.org/10.5301/hipint.5000513

[31] W. Burger, H.G. Richter, High strength and toughness alumina matrix composites by transformation toughening and in situ platelet reinforcement (ZPTA) – the new generation of bioceramics, Key Eng Mater 192-195(2001)545-548.

DOI: https://doi.org/10.4028/www.scientific.net/kem.192-195.545

[32] C. Piconi, G. Maccauro, Oxide Ceramics for Biomedical Applications, in: S. Hashmi (Editor-in-chief), Reference Module in Materials Science and Materials Engineering, Elsevier, Oxford, 2016, pp.1-8.

DOI: https://doi.org/10.1016/b978-0-12-803581-8.02151-2

[33] S. Begand, T. Oberbach, W. Glien, ATZ - a new material with high potential in joint replacement, Key Eng Mater 284-286 (2005) 983-986.

DOI: https://doi.org/10.4028/www.scientific.net/kem.284-286.983

[34] E. Meier, K. Gelse, K. Trieb, et al., First clinical study of a novel complete metal-free ceramic total knee replacement system, J Orthop Surg Res 11(2016)21(7pp).

DOI: https://doi.org/10.1186/s13018-016-0352-7

[35] P. Bergschmidt, R. Bader R, Ganzer, et al., Prospective multi-centre study on a composite ceramic femoral component in total knee arthroplasty: Five-year clinical and radiological outcomes, Knee 22(2015)186-191.

DOI: https://doi.org/10.1016/j.knee.2015.02.003

[36] U. Schreiner, A. Schulze, G. Scheller, C. Apruzzese, M.L. Schwarz, Osteointegration zementfreier Hüftpfannen aus Keramik. Z Othop Unf 150(2012)32-39.

DOI: https://doi.org/10.1055/s-0031-1280030

[37] C. Witt, Ceramic implant with titanium coating, In: ICC6 – 6th Intl. Congress on Ceramics, Abstracts Book, Deutsche Keramische Gesellshaft, Koeln, 2016, p.130.

[38] A.S. Dickinson, M. Browne, K.C. Wilson, J.R.T. Jeffers, A.C. Taylor, Pre-clinical evaluation of ceramic femoral head resurfacing prostheses using computational models and mechanical testing, Proc IMechE Part H: J Engineering in Medicine 225(2011).

DOI: https://doi.org/10.1177/0954411911411605

[39] C. Piconi, T. Kosmac, S.G. Condò. Alumina- and Zirconia-Based Ceramics for Load Bearing Applications, in: J.Z. Shen, T. Kosmac (Eds. ) Advanced Ceramics for Dentistry, Butterworth-Heinemann, Waltham, 2014, pp.220-253.

DOI: https://doi.org/10.1016/b978-0-12-394619-5.00011-0

[40] P. Palmero, M. Fornabaio, L. Montanaro, H. Reveron, C. Esnouf, J. Chevalier, Towards long lasting zirconia-based composites for dental implants, Biomaterials 50(2015)38-46.

DOI: https://doi.org/10.1016/j.biomaterials.2015.01.018

[41] C. Piconi, M. Sandri, New materials for dental implantology, Key Eng Mater 750(2017)189-194.

DOI: https://doi.org/10.4028/www.scientific.net/kem.750.189

[42] C. Piconi, G. Maccauro, E. Muratori, E. Brach del Prever, Alumina and zirconia ceramics in joint replacements: a review, J Appl Biomat Biomech 1(2003)19-32.

[43] C. Piconi, Alumina. In: P. Ducheyne, D.W. Grainger, E. Healy, D.W. Hutmacher, C.J. Kirkpatrick (eds. ) Comprehensive Biomaterials II, vol. 1. Oxford, Elsevier, 2017, p.92–121.

[44] C. Piconi, A.A. Porporati. Bioinert Ceramics: Zirconia and Alumina. in: Antoniac I (Ed. ) Handbook of Bioceramics and Biocomposites, Vol. 1 Ch 4, Springer, Berlin, 2016, pp.59-90.

DOI: https://doi.org/10.1007/978-3-319-12460-5_4

[45] P. Prokopovich. Interaction between mammalian cells and nano- or micro-sized wear particles: physico-chemicalviews against biological approaches. Adv Colloid Interfac 213(2014)36-47.

DOI: https://doi.org/10.1016/j.cis.2014.09.001

[46] J. Fisher, Z. Jin, J. Tipper, et al., Tribology of alternative bearings, Clin Orthop 453(2006)25-34.

[47] G. Maccauro, C. Piconi, F. Muratori, V. De Santis, W. Burger, Tissue reactions to wear debris: clinical cases Vs. animal model, in: Zippel M and Dietrich M (eds) Bioceramics in joint arthroplasty, Steinkoppf. Darmstadt, 2003, pp.81-88.

DOI: https://doi.org/10.1007/978-3-642-85763-8_10

[48] S. Lerouge, L'H. Yahia, O. Huk, et al., Wear debris and inflammatory response in tissues around failed alumina ceramic-on-ceramic hip prostheses, in: J. Wilson, L.L. Hench, D. Greenspan (Eds), Bioceramics 8, Elsevier, New York, 1995, pp.145-150.

[49] E. De Santis, G. Maccauro, L. Proietti, et al. Histologic and ultrastuctural analysis of alumina wear debris. Key Eng Mater 192-195(2001)995-98.

DOI: https://doi.org/10.4028/www.scientific.net/kem.192-195.995

[50] P.A. Faye. O. Roualdes, F. Rossignol, D.J. Hartmann, A. Desmoulière, Engulfment of ceramic particles by fibroblasts do not alter cell behavior, Biomed Mater 12(2017)015023 (DOI: 10: 1088/1748-605X/aa5aa2).

DOI: https://doi.org/10.1088/1748-605x/aa5aa2

[51] R. Sonntag, J. Reinders, J.P. Kretzer, What's next? Alternative materials for articulation in total joint replacements, Acta Biomaterialia 8(2012)2434-41.

DOI: https://doi.org/10.1016/j.actbio.2012.03.029

[52] J.R.T. Jeffers, W.L. Walter, Ceramic-on-ceramic bearings in hip arthroplasty. J Bone Joint Surg Br 94(2012)735-45.

DOI: https://doi.org/10.1302/0301-620x.94b6.28801

[53] T. Tateiwa, I.C. Clarke, P.A. Williams, et al. Ceramic total hip arthroplasty in the United States: safety and risk issues revisited. Am J Orthop 37(2008) E26-31.

[54] D. Hannouche, A. Zaoui, F. Zadegan, L. Sedel, R. Nizard, Thirty years of experience with alumina-on-alumina bearings in total hip arthroplasty. Int Orthop 35(2011)207-13.

DOI: https://doi.org/10.1007/s00264-010-1187-1

[55] J.A. Epinette, M.T. Manley, No differences found in bearing related hip survivorship at 10-12 years follow-up between patients with ceramic on highly cross-linked polyethylene bearings compared to patients with ceramic on ceramic bearings. J Arthroplasty 29(2014).

DOI: https://doi.org/10.1016/j.arth.2014.02.025

[56] W.G. Hamilton, J.P. McAuley, D.A. Dennis, J.A. Murphy, T.J. Blumenfeld, J. Politi. THA with Delta ceramic on ceramic. Clin Orthop 68(2010)358-66.

DOI: https://doi.org/10.1007/s11999-009-1091-4

[57] Y.H. Kim, J.S. Kim, J.W. Park, J.H. Joo. Total hip replacement with short metsphyseal-fitting anatomical cementless femoral component in patients aged 70 years or older. Bone Joint J 93(2011) 587-92.

DOI: https://doi.org/10.1302/0301-620x.93b5.25994

[58] P. Cai, Y. Hu, J. Xie. Large diameter Delta ceramic-on-ceramic vs. common-sized ceramic-on-polyethylene bearings. Orthopedics 35(2012) e1307-13.

DOI: https://doi.org/10.3928/01477447-20120822-14

[59] S.M. McDonnell, G. Boyce, J . Baré, D. Young, A.J. Shimmin. The incidence of noise generation arising from the large-diameter Delta Motion ceramic total hip bearing. Bone Joint J 95(2013)160-165.

DOI: https://doi.org/10.1302/0301-620x.95b2.30450

[60] K. Deep, C. Siramanakul, V. Mahajan. The incidence of noise in computer assisted total hip replacement with ceramic-on-ceramic bearing and risk factors analysis. Bone Joint J 96 Supp16 (2014)46.

[61] S.H. Baek, W.K. Kim, J.Y. Kim, S.J. Kim. Do alumina matrix composite bearing decrease hip noises and bearing fracture at a minimum of 5 years after THA? Clin Orthop 473(2014)3796-802.

DOI: https://doi.org/10.1007/s11999-015-4428-1

[62] A. Aoude, J. Antoniou, L.M. Epure, O.L. Huk, D.J. Zukor, M. Tanzer. Midterm Outcomes of the recently FDA approved ceramic on ceramic bearing in total hip arthroplasty patients under 65 years of age. J Arthroplasty 30(2015)1388-92.

DOI: https://doi.org/10.1016/j.arth.2015.03.028

[63] W.G. Hamilton, J.P. McAuley, T.J. Blumenfeld, J.P. Lesko JP, S. Himden S, D.A. Dennis. Midterm results of delta ceramic-on-ceramic total hip arthroplasty, J Arthroplasty 30(2015)110-15.

DOI: https://doi.org/10.1016/j.arth.2015.02.047

[64] Y.K. Lee, Y.C. Ha, W.L. Jo, T.Y. Kim, W.H. Jung, K.H. Koo. Could larger diameter of the 4th generation ceramic bearing decrease the rate of dislocation after THA? J Orthop Sci 21(2016)327-31.

DOI: https://doi.org/10.1016/j.jos.2016.01.002

[65] S.J. Lim, S.M. Kim, D.W. Kim, Y.W. Moon, Y.S. Park. Cementless total hip arthroplasty using BioloxÒdelta ceramic-on-ceramic bearing in patients with osteonecrosis of the femoral head. Hip Intl 26(2016)144-48.

DOI: https://doi.org/10.5301/hipint.5000311

[66] G. Willmann, Fiction and facts concerning the reliability of ceramics in THR, in: H. Zippel, M. Dietrich (Eds. ) Bioceramics in Joint Arthroplasty, Steinkopff, Darmstadt, 2003, pp.193-196.

DOI: https://doi.org/10.1007/978-3-642-85763-8_30

[67] P. Massin, R. Lopes, B. Masson, D. Mainard and the French Hip & Knee Society (SFHG), Does Biolox®delta ceramic reduce the rate of component fractures in total hip replacement? Orthopaedics & Traumatology: Surgery & Research 100(2014)S317–21.

DOI: https://doi.org/10.1016/j.otsr.2014.05.010

[68] U. Sentuerk, P. von Roth, C. Perka, Ceramic on ceramic arthroplasty of the hip, Bone Joint J 98-B (2016) 2 Suppl A, 14-17.

DOI: https://doi.org/10.1302/0301-620x.98b1.36347

[69] J. p. McAuley, D.A. Dennis, J. Grostefon, W.G. Hamilton. Factors affecting modular acetabular ceramic liner insertion: a biomechanical analysis. Clin Orthop 470(2012)402-9.

DOI: https://doi.org/10.1007/s11999-011-2193-3

[70] H. Oonishi, H. Oonishi, S.C. Kim, Ceramic knee arthroplasty: advanced clinical experiences of 26 years, Semin Arthoplasty 17(2006)134-140.

DOI: https://doi.org/10.1053/j.sart.2006.09.007

[71] T. Nakamura, E. Oonishi, T. Yasuda, Y. Nakagawa, A new knee prosthesis with bisurface femoral component made of zirconia ceramic, Key Eng Mater 254/256(2004)607-609.

DOI: https://doi.org/10.4028/www.scientific.net/kem.254-256.607

[72] G. Solarino, C. Piconi, V. De Santis, A. Piazzolla, B. Moretti, Ceramic total knee arthroplasty: ready to go? submitted to Joints (2017).

DOI: https://doi.org/10.1055/s-0037-1607428

[73] C. Piconi, V. De Santis, G. Maccauro, Clinical outcomes of ceramicized ball heads in total hip replacement bearings: a literature review, J Appl Biomater Funct Mater 15 (2017) 1-9.

DOI: https://doi.org/10.5301/jabfm.5000330

[74] F. Adam, D.S. Hammer, S. Pfausch, K. Westermann, Early failure of a press-fit carbon fiber hip prosthesis with a smooth surface, J Arthroplasty 17(2002) 217-223.

DOI: https://doi.org/10.1054/arth.2002.30285

[75] C. Piconi. Non-oxide ceramics: status quo and future options, in: Cobb J (Ed. ) Modern Trends in THA Bearings. Springer, Berlin, 2010, pp.37-44.

[76] Bull Office Federal Santé Publique (Swissmedic). Retrait de Protése de genou Diamond Rota Gliding. 27. 8. (2001).

[77] E. Alakoski, V. -M. Tiainen, A. Soininen, Y.T. Konttinen, Load-bearing biomedical applications of diamond-like carbon coatings - current status, The Open Orthopaedics Journal 2(2008)43-50.

DOI: https://doi.org/10.2174/1874325000802010043

[78] B.S. Bal, M.N. Ramahan, Orthopedic applications of silicon nitride ceramics, Acta Biomater 8(2012)2889-2898.

[79] V. Medri, E. Landi, A. Bellosi, Non-Oxide Ceramics, in: R. Sonntag, J.P. Kretzer, Materials for Total Joint Arthroplasty, Imperial College, London, 2016, pp.183-222.

DOI: https://doi.org/10.1142/9781783267170_0007

[80] Z. Badran, X. Struillou, F.J. Hughes, A. Soueidan, A. Hoornaert, M. Ide, Silicon Nitride (Si3N4) implants: the future of dental implantology? 43(2017)240-44.

DOI: https://doi.org/10.1563/aaid-joi-d-16-00146