Computational Prediction of Trimethylgallium Adsorption on Si(100)(2×1) in Atomic Layer Deposition

Abstract:

Article Preview

The computational prediction of the surface adsorption in atomic layer deposition of gallium oxide by using trimethylgallium (TMG) is investigated. One dimer of Si (100)(2×1) is used as the substrate. The hydroxyl radicals are used to produce the absorption sites for the TMG adsorbed surface as OH–Si–Si–OH surface species. Two sites adsorption of the TMG on the surface are predicted. The geometry, vibrational frequency, and free energy of –OH adsorption sites and TMG adsorption are calculated by Gaussian 09 package by using standard B3LYP method. The results showed that TMG is possible to adsorb on silicon dimer with two sites adsorption. The geometry and vibrational frequencies are also reported in this paper.

Info:

Periodical:

Edited by:

Prof. Gu Xu

Pages:

43-47

Citation:

S. Sukhasena and P. P. Pansila, "Computational Prediction of Trimethylgallium Adsorption on Si(100)(2×1) in Atomic Layer Deposition", Key Engineering Materials, Vol. 759, pp. 43-47, 2018

Online since:

January 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] L.S. Qiu, X.D. Zhua, S. Lua, G.Y. He and K.W. Xu: Surf. Coat. Tech. Vol. 315 (2017), p.303.

[2] L. Skowronski, A.A. Wachowiak, K. Zdunek, M. Trzcinski and M.K. Naparty: Thin Solid Films Vol. 627 (2017), p.1.

[3] J. Pippola, T. Marttila and L. Frisk: Microelectron. Reliab. Vol. 54 (2014), p. (2048).

[4] M.T. I. Gasab, M. Uchiyama, T. Nakatani, A. Valanezhadc, I. Watanabe and H. Fujiyama: Surf. Coat. Tech. Vol. 307 (2016), p.1084.

[5] C. Boudot, M. Kühn, M. Kühn-Kauffeldt and J. Schein: Mat. Sci. Eng. C Vol. 74 (2017), p.508.

[6] Z. Zhai, H. Shen, J. Chen, Y. Jiang and Q. Tang: Carbon Vol. 117 (2017), p.322.

[7] N. He, H. Li, L. Ji, X. Liu, H. Zhou and J. Chen: Tribol. Int. Vol. l98(2016), p.133.

[8] P. Pansila, K. Kanomataa, M. Miura, B. Ahmmad, S. Kubotaa and F. Hirose: Appl. Surf. Sci. Vol. 357 (2015), p. (1920).

[9] Y. Tsai, A. Chittawanij, F. Juang, P. Lin, L. Hong, F. Tsai, M. Tseng, C. Wang, C. Chen, K. Lin and S. Chen: J. Phys. Chem. Solids. Vol. 83 (2015), p.135.

[10] Z.K. Smedarchina and M.Z. Zgierski: Int. J. Mol. Sci. Vol. 4 (2003), p.445.

[11] M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek and G.R. Hutchison: J. Cheminform. Vol. 4 (2012), p.17.

[12] Gaussian 09, Revision B. 01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian, Inc., Wallingford CT, (2010).

[13] P.P. Pansila, K. Kanomata, B. Ahmmad, S. Kubota and F. Hirose: IEICE Trans. Electron. Vol. E98-C No. 5 (2015), p.382.

DOI: https://doi.org/10.1587/transele.e98.c.395

[14] J.O. Jensen: J. Mol. Struc-Theochem Vol. 673 (2004), p.173.

[15] H.R.R. Santos, M.J. Ramos, J.A.N.F. Gomes: C. R. Chimie Vol. 8 (2005), p.1461.

Fetching data from Crossref.
This may take some time to load.