Effect of Electron Bombardment on Polyimide Film


Article Preview

Interaction of high energy electrons with spacecraft materials, such as polyimide (PI, Kapton-H®), is known to cause their physical degradation. However, understanding of the chemical nature of this damage and the effect on the electrical and optical properties of PI is still limited. This lack of understanding limits predictive spacecraft models (charging, thermal, etc) as only pristine material properties are used for calculation. This is a major source of error in spacecraft construction and anomaly resolution, since PI properties change after exposure to the space environment. In the presented study, we analyze the chemical, electrical, and optical changes to polyimide after exposure to 90 keV electrons.



Edited by:

Prof. Gu Xu




D. P. Engelhart et al., "Effect of Electron Bombardment on Polyimide Film", Key Engineering Materials, Vol. 759, pp. 48-53, 2018

Online since:

January 2018




* - Corresponding Author

[1] A. Rahnamoun and A. van Duin, The Journal of Physical Chemistry A 118 (15), 2780-2787 (2014).

[2] C. J. Wohl, M. A. Belcher, S. Ghose and J. W. Connell, Applied Surface Science 255 (18), 8135-8144 (2009).

[3] M. Schumann, R. Sauerbrey and M. Smayling, Applied physics letters 58 (4), 428-430 (1991).

[4] D. A. Russell, J. W. Connell and L. B. Fogdall, Journal of spacecraft and rockets 39 (6), 833-838 (2002).

[5] G. Marletta and F. Iacona, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 80-1, 1045-1049 (1993).

DOI: https://doi.org/10.1016/0168-583x(93)90733-m

[6] R. Mehnert, in Application of Particle and Laser Beams in Materials Technology, edited by P. Misaelides (1995), Vol. 283, pp.557-580.

[7] T. Paulmier, B. Dirassen, M. Arnaout, D. Payan and N. Balcon, presented at the Solid Dielectrics (ICSD), 2013 IEEE International Conference on, 2013 (unpublished).

DOI: https://doi.org/10.1109/icsd.2013.6619845

[8] C. Meng, W. Fang, L. Jing and Z. Hai-Bo, Chinese Physics B 21 (12), 127901 (2012).

[9] E. P. Daniel P. Engelhart, Sunita Humagain, Steven Greenbaum, Dale Ferguson, Russell Cooper, Ryan Hoffmann, IEEE transactions on plasma science Submitted for publication (IEEE Transactions on Plasma Science Special Issue - Spacecraft Charging Technology – 2017) (2017).

DOI: https://doi.org/10.1109/tps.2017.2729516

[10] R. Cooper and R. Hoffmann, Air Force Technical Report AFRL-RV-PS-TP-2015-0012 (2015).

[11] G. Ginet, T. O'Brien, S. Huston, W. Johnston, T. Guild, R. Friedel, C. Lindstrom, C. Roth, P. Whelan and R. Quinn, Space Sci Rev 179 (1-4), 579-615 (2013).

[12] D. P. E. Elena Plis, David Barton, Russell Cooper, Dale Ferguson, Ryan Hoffmann, Physica Status Solidi B-Basic Research Accepted for publication (2017).

[13] J. R. Dennison, J. Brunson, P. Swaminathan, N. W. Green and A. R. Frederickson, IEEE transactions on plasma science 34 (5), 2191-2203 (2006).

DOI: https://doi.org/10.1109/tps.2006.883400

[14] S. S. Yohei Komiyama, Hiroaki Miyake, Yasuhiro Tanaka, Tatsuo Takada in Protection of Materials and Structures From the Space Environment, edited by M. T. Jacob Kleiman, Yugo Kimoto (Springer Verlag, 2012), p.456.

[15] Y. N. Gartstein and E. M. Conwell, Physical Review B 51 (11), 6947-6952 (1995).

[16] C. P. Ennis and R. I. Kaiser, Physical Chemistry Chemical Physics 12 (45), 14902-14915 (2010).

[17] M. A. George, B. L. Ramakrishna and W. S. Glaunsinger, Journal of Physical Chemistry 94 (12), 5159-5164 (1990).

[18] R. Toomer and T. Lewis, Journal of Physics D: Applied Physics 13 (7), 1343 (1980).