The Mechanical and Physical Properties of Construction and Demolition Waste - Epoxy Composites

Abstract:

Article Preview

Due to the increasing concern about the environment and depleting conventional materials, a lot of research is going on in the field of material science to develop environment friendly materials, and to improve the recycling and reusing of waste materials. Composites are material providing possibilities to reach these targets. In this experimental study, the possibilities and potential in the utilization of mixed waste from recycling in the manufacturing of epoxy composites are studied. The studied properties are flexural properties, i.e. flexural strength and flexural modulus, and hardness as mechanical properties, and water absorption and thickness swelling as physical properties. Element analysis was used to determine the composition of construction and demolition waste used in manufacturing. The analysis revealed a large proportion of mineral elements with high hardness. Consequently, this had a clear impact on the hardness of the composite. The flexural properties were found to be on a reasonable level. The waste-epoxy composite showed a low uptake of water due to the minor content of hydrophilic materials present in the composite.

Info:

Periodical:

Edited by:

Prof. Gu Xu

Pages:

9-14

Citation:

M. Hyvärinen and T. Kärki, "The Mechanical and Physical Properties of Construction and Demolition Waste - Epoxy Composites", Key Engineering Materials, Vol. 759, pp. 9-14, 2018

Online since:

January 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] A. Srivastava and M. Maurya: Int. J. Res. Eng. Tech. 4 (2015), pp.397-400.

[2] S. Panthapulakkal and M. Sain: Compos. Part A-Appl. S. 38 (2007), p.1445–1454.

[3] FP. La Mantia and M. Morreale: Polym. Degrad. Stab. 93 (2008), p.1252–1258.

[4] A.K. Bledzki, A.A. Mamun and J. Volk: Compos. Sci. Technol. 70 (2010), p.840–846.

[5] A. Nourbakhsh and A. Ashori: Bioresource Technol. 101 (2010), pp.2525-2528.

[6] M. Koleva, A. Zheglova, V. Vassilev and E. Fidancevska, in: Advances in Composite Materials – Analysis of Natural and Man-Made Materials, edited by P. Tesinova, InTech (2011), pp.3-28.

DOI: https://doi.org/10.5772/18215

[7] M. Hyvärinen and T. Kärki: MATEC web conf. 30 (2015), p.01014.

[8] Information on http: /ec. europa. eu/environment/waste/pdf/Commission%20Working%20Doc. pdf.

[9] O. Väntsi and T. Kärki: Constr. Build. Mater. 55 (2014), pp.220-226.

[10] Md. Safiuddin, Mood Zamin Jumaat, M.A. Salam, M.S. Islam and R. Hashim: Int. J. Phys. Sci. 5 (2010), p.1952-(1963).

[11] S.J. Pickering: Compos. Part A. 37 (2006), p.1206–1215.

[12] R. Malkapuram, V. Kumar and Y.S. Negi: J. Reinf. Plast. Comp. 28 (2008), pp.1169-1189.

[13] Y. Zheng, Z. Shen, C. Cai, S. Ma and Y. Xing: J. Hazard. Mater. 130 (2009), pp.600-606.

[14] B. Qi, Z. Yuan, S. Lu, K. Liu, S. Li, L. Yang and J. Yu: Fiber. Polym. 15 (2014), pp.326-333.

[15] F. Jeyranpour, Gh. Alahyarizadeh and B. Arab: J. Mol. Graph. Model. 62 (2015), pp.157-164.

[16] M.N. Prabhakar, A.U.R. Shah, K.C. Rao and J-I. Song: Fiber. Polym. 16 (2015), pp.1119-1124.

[17] J.R.M. d'Almeida and B.H.P. Manfredini: J. Appl. Polym. Sci. 84 (2002), pp.2178-2184.

[18] S. Bhagat and P. K. Verma: Int. J. Emerg. Tech. Adv. Eng. 3 (2013), pp.427-430.

[19] Shetty Ravindra Rama and S. K. Rai: J. Reinf. Plast. Comp. 27 (2008), pp.1663-1671.

[20] A. Espert, F. Vilaplana and S. Karlsson: Compos. Part A-Appl. S. 35 (2004), p.1267–1276.

[21] O. Väntsi and T. Kärki: J. Reinf. Plast. Comp. 34 (2015), pp.879-895.

[22] S. Butylina, O. Martikka and T. Kärki: Appl. Compos. Mater. 18 (2011), p.101–111.

[23] S. Butylina, M. Hyvärinen and T. Kärki: Eur. J. Wood Prod. 70 (2012), p.719–726.

[24] H. Alamri and I.M. Low: Polym. Composite. 33 (2012), pp.589-600.

[25] R. Masoodi and K.M. Pillai: J. Reinf. Plast. Comp. 31 (2012), pp.285-294.

[26] G. Raghavendra, K.A. Kumar, M.H. Kumar, B. RaghuKumar and S. Ojha: Polym. Composite. (2015), pp.516-522.

Fetching data from Crossref.
This may take some time to load.