Production and Characterization of Oxyhydroxyapatites


Article Preview

The amount and alignment of hydroxyl ions influence the bioactivity of hydroxyapatite. Hydroxyl ions in hydroxyapatite are the most mobile and upon heating are the first to leave the lattice to form oxyhydroxyapatite. This work describes a method for producing hydroxyapatite with different amounts of hydroxyl ions, and reports on the changes in Fourier transform infrared absorption at increasing level of dehydroxylation. Detailed analysis of spectra in the 500 – 700 cm-1 range showed a peak shift for the hydroxyl ion absorption line at 632 cm-1 to 637 cm-1 and an increase in the wavenumber for the phosphate line at 575 cm-1.



Edited by:

Valdis Kokars




L. Pluduma et al., "Production and Characterization of Oxyhydroxyapatites", Key Engineering Materials, Vol. 762, pp. 48-53, 2018

Online since:

February 2018




* - Corresponding Author

[1] Wang T, Dorner-Reisel A, Müller E. Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. Journal of the European Ceramic Society 2004; 24: 693-8.


[2] White AA, Kinloch IA, Windle AH, Best SM. Optimization of the sintering atmosphere for high-density hydroxyapatite-carbon nanotube composites. Journal of the Royal Society Interface 2010; 7: S529-S39.


[3] Liao CJ, Lin FH, Chen KS, Sun JS. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials 1999; 20: 1807-13.


[4] Park HC, Baek DJ, Park YM, Yoon SY, Stevens R. Thermal stability of hydroxyapatite whiskers derived from the hydrolysis of α-TCP. Journal of Materials Science 2004; 39: 2531-4.


[5] Cihlář J, Buchal A, Trunec M. Kinetics of thermal decomposition of hydroxyapatite bioceramics. Journal of Materials Science 1999; 34: 6121-31.

[6] Gross KA, Berndt CC, Stephens P, Dinnebier R. Oxyapatite in hydroxyapatite coatings. Journal of Materials Science 1998; 33: 3985-91.

[7] Tonsuaadu K, Gross KA, Pluduma L, Veiderma M. A review on the thermal stability of calcium apatites. Journal of Thermal Analysis and Calorimetry 2012; 110: 647-59.


[8] Yang C-W, Lui T-S. Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings. Acta Biomaterialia 2009; 5: 2728-37.


[9] Baxter FR, Bowen CR, Turner IG, Dent ACE. Electrically active bioceramics: A review of interfacial responses. Annals of Biomedical Engineering 2010; 38: 2079-92.


[10] Pluduma L. Hydroxyl ion quantification in hydroxyapatite and the effect on the biological response. PhD Thesis. Riga: Riga Technical University; (2017).

[11] Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier Inc, Amsterdam 1994: 387.

[12] J.C. Trombe. Contribution a l'etude de la decomposition et de la reactivite de certaines apatites hydroxylees et carbonatees. Annales des Chimie 1973; 8: 251-69.

[13] Rapacz-Kmita A, Paluszkiewicz C, Slosarczyk A, Paszkiewicz Z. FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes. Journal of Molecular Structure 2005; 744: 653-6.


[14] Engel G, Klee WE. INFRARED-SPECTRA OF HYDROXYL IONS IN VARIOUS APATITES. Journal of Solid State Chemistry 1972; 5: 28.


[15] Rey C, Combes C, Drouet C, Lebugle A, Sfihi H, Barroug A. Nanocrystalline apatites in biological systems: Characterisation, structure and properties. Materialwissenschaft und Werkstofftechnik 2007; 38: 996-1002.