Table of Contents

Preface

Keynote Lectures

New Zealand Research Applications of, and Developments in, Low Damage Technology for Steel Structures
G.A. MacRae, G.C. Clifton and M. Bruneau | 3

Reconstructing Christchurch: Quantitative Findings on Shift in Building Structural Systems
M. Bruneau and G.A. MacRae | 11

Development of Structural Metal Energy-Dissipation Techniques for Seismic Disaster Mitigation of Buildings in China
G.Q. Li, H.J. Jin, M.D. Pang, Y.W. Li, Y.Z. Sun and F.F. Sun | 18

Lightweight Steel Constructions for Seismic Areas
R. Landolfo | 32

Buckling-Restrained Brace: History, Design and Applications
T. Takeuchi | 50

Lessons from the Field; Steel Structure Performance in Earthquakes in New Zealand from 2010 to 2016
G.C. Clifton and G.A. MacRae | 61

Chapter 1: Performance Based Design

An Empirical Methodology for Seismic Damage Control of CFT-MRFs
G.S. Kamaris, K.A. Skalomenos, G.D. Hatzigeorgiou and D.E. Beskos | 75

Multi-Mode Pushover Procedure to Estimate Higher Modes Effects on Seismic Inelastic Response of Steel Moment-Resisting Frames
M. Ferraioli, A. Lavino and A. Mandara | 82

Earthquake-Induced Collapse Risk and Loss Assessment of Steel Concentrically Braced Frames
S.H. Hwang and D.G. Lignos | 90

Evaluating the Behaviour Factor of Concentric X-Braced Steel Structures
D. Yahmi, T. Branci, A. Bouchaïr and E. Fournely | 98

Comments about the Seismic Behavior of “Inverted Y”- Braced Frames
H. Köber and M. Stoian | 106

Seismic and Robustness Design of Steel Frame Buildings
M. Ferraioli, A. Lavino, A. Mandara, M. Donciglio and A. Formisano | 116

From Design to Earthquake Loss Assessment of Steel Moment-Resisting Frames
L. Macedo, A. Silva and J.M. Castro | 124

Seismic Behavior Investigation of Prefabricated Steel Industrial Buildings
K.A. Korkmaz and M. Uzer | 131

Chapter 2: Behaviour of Connections

Seismic Design of Gusset Plate Connections in Concentrically Braced Frames
Y. Cui, W. Zhang, J.C. Zhang and Q. Tang | 141

Effect of Column Base Flexibility on Earthquake-Induced Residual Deformations of Steel Columns
H. Inamasu, D.G. Lignos and A.M. Kanvinde | 149

Effect of Beam-Column Connection Fixity on Collapse Performance of a Six-Storey Special Concentrically Braced Frame
V. Mohsenzadeh and L.D.A. Wiebe | 157
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 3: Behaviour of Members and Components</td>
<td></td>
</tr>
<tr>
<td>Failures and Prediction Methods of Lateral Buckling Strength of H-Shaped Beams Connected by Flush End Plates</td>
<td>227</td>
</tr>
<tr>
<td>H. Matsubara, J. Takahashi, Y. Ikeguchi and K. Ikarashi</td>
<td></td>
</tr>
<tr>
<td>Required Column Overdesign Factor of 3D Steel Moment Frames with Square Tube Columns</td>
<td>235</td>
</tr>
<tr>
<td>I. Chan and Y. Koetaka</td>
<td></td>
</tr>
<tr>
<td>Battened Steel Columns with Semi-Continuous Base Plate Connections: Experimental Results vs. Theoretical Predictions</td>
<td>243</td>
</tr>
<tr>
<td>G. della Corte, G. Cantisani and R. Landolfo</td>
<td></td>
</tr>
<tr>
<td>Estimation Method on Hysteresis Characteristics of Subassemblage with Ductile Knee-Brace Member</td>
<td>251</td>
</tr>
<tr>
<td>S. Honma, Y. Harada and K. Ebato</td>
<td></td>
</tr>
<tr>
<td>Column Moment Demands from Orthogonal Beam Twisting</td>
<td>259</td>
</tr>
<tr>
<td>G. Webb, K. Kosinamonth, T. Chaudhari, S. Alizadeh and G.A. MacRae</td>
<td></td>
</tr>
<tr>
<td>Buckling Behavior of Circular Steel Tubes under Fire</td>
<td>270</td>
</tr>
<tr>
<td>J.H. Seo, D.H. Won, W.S. Park and S.J. Kim</td>
<td></td>
</tr>
<tr>
<td>Effects of Changing Double Angles Configuration Used as Braces in Seismic Resisting Systems</td>
<td>279</td>
</tr>
<tr>
<td>C. Bermudez and O. Gutierrez</td>
<td></td>
</tr>
<tr>
<td>Seismic Behavior and Design of Innovative Modular Steel Floor System</td>
<td>287</td>
</tr>
<tr>
<td>T.Y. Yang, S.R. Zhuo and Y.J. Li</td>
<td></td>
</tr>
<tr>
<td>Seismic Ratchetting of Single-Degree-of-Freedom Steel Bridge Columns</td>
<td>295</td>
</tr>
<tr>
<td>K. Saif, C.L. Lee, T. Yeow and G.A. MacRae</td>
<td></td>
</tr>
<tr>
<td>Portal Frames with a Novel Cold-Formed Tapered Box-Section</td>
<td>301</td>
</tr>
<tr>
<td>A. Shahmohammadi, J.B.P. Lim and G.C. Clifton</td>
<td></td>
</tr>
<tr>
<td>Compatibility Forces in Floor Diaphragms of Steel Braced Multi-Story Buildings</td>
<td>310</td>
</tr>
<tr>
<td>H. Rezaeian, G.C. Clifton and J.B.P. Lim</td>
<td></td>
</tr>
<tr>
<td>Capacity Design Criteria of 3D Steel Lattice Beams for Applications into Cultural Heritage Constructions and Archaeological Sites</td>
<td>320</td>
</tr>
<tr>
<td>A. Formisano, G. di Lorenzo, E. Babilio and R. Landolfo</td>
<td></td>
</tr>
<tr>
<td>Chapter 4: Experimental Studies and Testing</td>
<td></td>
</tr>
<tr>
<td>Shake Table Testing of a Low Damage Steel Building with 2-4 Displacement Dependent (D3) Viscous Damper</td>
<td>331</td>
</tr>
<tr>
<td>N.K. Hazaveh, A.A. Rad, G.W. Rodgers, J.G. Chase, S. Pampanin and Q.T. Ma</td>
<td></td>
</tr>
</tbody>
</table>
Full-Scale Cyclic Testing of Self-Centering Modular Panels for Seismic Resilient Structures
W. Wang, X.L. Du, Y.F. Zhang, G.L. Chu and Y.Y. Chen

339

Shake Table Testing of Steel Braced Frame Considering Member Fracture
Y. Terazawa, R. Matsui and T. Takeuchi

347

Seismic Testing of the Connecting Joint in a Buckling-Restrained K-Braced RC Frame
A.C. Wu, K.C. Tsai and T.L. Lin

354

Cyclic Behavior of Panel Zone in Steel Moment Frame under Bidirectional Loading
Y.D. Wang, R. Arakida, I. Chan, Y. Koetaka and T. Nakano

361

Experimental Study on a Steel-Tube Damper
Y.Z. Sun, G.Q. Li and F.F. Sun

369

Steel Columns under Multi-Axis Seismic Loading: Experimental Findings and Design Recommendations
A. Elkady, J. Cravero and D.G. Lignos

376

Experimental Testing and Design of High Performance Shear Links for Eccentrically Braced Frames
D. Volynkin-Ewens, G.C. Clifton and P. Dusicka

384

Experimental Verification of Design Models in a Static and Dynamic Loading Test
V. Kvocak, D. Dubeky and V. Kozlejova

394

Shake Table Testing of a Low Damage Steel Building with Asymmetric Friction Connections (AFC)
A.A. Rad, G.A. MacRae, N.K. Hazaveh and Q.T. Ma

400

Experimental Tests on Extended Stiffened End-Plate Joints within Equal Joints Project
M. D’Aniello, R. Tartaglia, S. Costanzo, G. Campanella, R. Landolfo and A. de Martino

406

Experimental Test of Welded Wide Flange Fuses
T.Y. Yang, W. Banjuradja and L. Tobber

414

Shake Table Testing of Lightweight Steel Drywall Nonstructural Components
B. Bucciero, T. Pali, M.T. Terracciano, V. Macillo, L. Fiorino and R. Landolfo

423

Shake Table Tests of Structures with CFS Strap-Braced Stud Walls
M.T. Terracciano, B. Bucciero, T. Pali, V. Macillo, L. Fiorino and R. Landolfo

432

Seismic Tests of Welded Moment Resisting Connections Made of Laser-Welded Stainless Steel Sections
H. Taheri, G.C. Clifton, P.S. Dong, M. Karpenko, G.M. Raftery and J.B.P. Lim

440

Experimental Tests for Pre-Qualification of a Set of Buckling-Restrained Braces
A. Stratan, C.I. Zub and D. Dubină

450

Behaviour of Square Tubular Columns in Connection to I Beams with Welded Reverse Channel under Experimental Tests
L. Magalhães, C. Rebelo and S. Jordão

458

Shake Table Test of a Half-Scale 2-Storey Steel Building Seismically Retrofitted Using Rocking Braced Frame System
P. Mottier, R. Tremblay and C.A. Rogers

466

Contribution of Beam-Column Connections with Bolted Angles in the Reserve Capacity and Full-Scale Cyclic Testing

475

Chapter 5: Numerical Modelling

Comparison of Hysteretic Models for Steel Beams Calibrated by Means of Multi-Objective Optimisation
C. Chisari and G. Rizzano

487

Finite Element Analysis on K-Type External Braced Steel Frame System

495

High-Performance Computer-Aided Optimization of Viscous Dampers for Improving the Seismic Performance of a Tall Steel Building
S.S. Wang and S. Mahin

502

On-Line Testing of Steel Brace Connections Using Non-Linear Substructuring and Force-Displacement Combined Control
K.A. Skalomenos, T. Takeda, M. Kurata and M. Nakashima

510
Finite Element Analysis of Eccentrically Braced Frames with Removable Link
N. Mago, K. Cowie and G.C. Clifton 518

A Finite Element Study of Non-Orthogonal Bolted Flange Plate Connections for Seismic Applications
Z.D. Hunn, G.A. Rassati, J.A. Swanson and T.M. Burns 525

Numerical Model of Cold Press-Formed Square Steel Tube Columns Considered with Degradation Behavior due to Local Buckling and/or Fracture
Y. Koetaka, K. Taniguchi and I. Chan 533

Cyclic Performance of a Lightweight Rapidly Constructible and Reconfigurable Modular Steel Floor Diaphragm
E. Boadi-Danquah, D. MacLachlan and M. Fadden 541

Floor Diaphragm In-Plane Modelling Using Elastic Truss Elements
S. Alizadeh, G.A. MacRae, D. Bull and G.C. Clifton 549

Seismic Simulation of U.S. and Japanese Type Steel Moment-Resisting Frame Structures Using Practical FEM Macro Models
H. Tagawa and G.A. MacRae 557

Computational Challenges in Real-Time Hybrid Simulation of Tall Buildings under Multiple Natural Hazards
C. Kolay, J.M. Ricles, T.M. Marullo, S. Al-Subaihawi and S.E. Quiel 566

Finite Element Analysis of Composite Replaceable Short Links
M. Zimbru, M. D’Ariello, A. Stratan, R. Landolfo and D. Dubiñà 576

Seismic Behaviour of Sheathed CFS Buildings: Shake-Table Testing and Numerical Modelling
V. Macillo, A. Campiche, S. Shakeel, B. Bucciero, T. Pali, M.T. Terracciano, L. Fiorino and R. Landolfo 584

Preliminary Finite Element Analyses on Seismic Resistant FREE from DAMage Beam to Column Joints under Impact Loading

Numerical Study of Asymmetric Friction Connections (AFC) with Large Grip Length Bolts
M. Hatami, G.A. MacRae, G.W. Rodgers and G.C. Clifton 600

Development of a Hybrid Simulation Computational Model for Steel Braced Frames
A. Imanpour, R. Tremblay, M. Leclerc and R. Siguer 609

Equilibrium Analysis of Pin-Jointed Steel Structures under Large Variations of Configuration
I. Corbi, O. Corbi and F. Tropeano 619

Numerical Study on Moment Resisting Frames under Monotonic and Cyclic Loads
B. Faggiano, A. Formisano, G. Vaiano and F.M. Mazzolani 625

Numerical Study on Concentric Braced X Frames under Monotonic and Cyclic Loads
B. Faggiano, A. Formisano, G. Vaiano and F.M. Mazzolani 633

Chapter 6: Structural Systems

Design and Assessment of Cold-Formed Steel Shear Wall Systems Located in Moderate-to-High Seismicity Regions
S. Kechidi, L. Macedo, J.M. Castro and N. Bourahla 645

Shear Resistance Mechanisms on Steel Sheet Shear Walls with Burring Holes and the Effect of Cross-Rails
Y. Kawai, K. Fujishashi, S. Tohnai, A. Sato and T. Ono 653

A Proof-of-Concept Study on Self-Centering Column Feet Equipped with Innovative Shape Memory Alloy Ring Springs
C. Fang, W. Wang and X. Yang 661

Collapse Mechanisms of Controlled Rocking Steel Braced Frames: Base Rocking Joint vs. Capacity-Protected Frame Members
T.C. Steele and L.D.A. Wiebe 669

Seismic Fragility Analysis of MRFs with PR Bolted Connections Using IDA Approach
E. Brunesi, R. Nascimbene and G.A. Rassati 678

Collapse Analysis of Steel Frames Considering Fracture of Braces and End of Beams
R. Matsui, T. Takeuchi, S. Urui and M. Tokuno 686
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behaviour of Steel Structures in Seismic Areas</td>
<td></td>
</tr>
<tr>
<td>Cyclic Performance of Braces with Different Support Connections in Special Concentrically Braced Frames</td>
<td>694</td>
</tr>
<tr>
<td>P. Patra, P.C.A. Kumar and D.R. Sahoo</td>
<td></td>
</tr>
<tr>
<td>Seismic Collapse Analysis of Steel Plate Shear Wall Systems</td>
<td>702</td>
</tr>
<tr>
<td>A. Verma and D.R. Sahoo</td>
<td></td>
</tr>
<tr>
<td>Effect of Special Segment Aspect Ratio on Seismic Performance of Special Truss Moment Frames (STMFs)</td>
<td>709</td>
</tr>
<tr>
<td>R. Kumar and D.R. Sahoo</td>
<td></td>
</tr>
<tr>
<td>Hysteretic Features of Low Yield Point Steel and its Influence on Shear Plate Damper Behavior</td>
<td>718</td>
</tr>
<tr>
<td>Q. He, Y.Y. Chen, W. Wang and H. Tian</td>
<td></td>
</tr>
<tr>
<td>Damage Avoidance Self-Centering Steel Moment Resisting Frames (MRFs) Using Innovative Resilient Slip Friction Joints (RSFJs)</td>
<td>726</td>
</tr>
<tr>
<td>A. Hashemi, P. Zarnani, F.M. Darani, A. Valadbeigi, G.C. Clifton and P. Quenneville</td>
<td></td>
</tr>
<tr>
<td>Comparative Analysis of Dual Steel Frames with Dissipative Metal Shear Panels</td>
<td>735</td>
</tr>
<tr>
<td>G. de Matteis and G. Brando</td>
<td></td>
</tr>
<tr>
<td>Strip Model Analysis for Steel Plate Shear Walls in Earthquake Resistant Structures</td>
<td>743</td>
</tr>
<tr>
<td>E. Totter, A. Formisano, F.M. Mazzolani and F. Crisafulli</td>
<td></td>
</tr>
<tr>
<td>The Sliding Hinge Joint: Final Steps towards an Optimum Low Damage Seismic-Resistant Steel System</td>
<td>751</td>
</tr>
<tr>
<td>S. Ramhormozian, G.C. Clifton, G.A. MacRae and H.H. Khoo</td>
<td></td>
</tr>
<tr>
<td>Chapter 7: Mixed and Composite Structures</td>
<td></td>
</tr>
<tr>
<td>Experimental and Numerical Studies on Seismic Behavior of Q460 High Strength Steel Reinforced Concrete Column</td>
<td>763</td>
</tr>
<tr>
<td>S.W. Chen, M. Yang, Z.X. Hou, G.Q. Li and Q. Liu</td>
<td></td>
</tr>
<tr>
<td>Composite Frames with Dissipative Beam Splices: Numerical Analyses and Design Guidelines</td>
<td>771</td>
</tr>
<tr>
<td>L. Calado, J.M. Proença and J.F.A. Sio</td>
<td></td>
</tr>
<tr>
<td>Experimental Behavior of Square Tubed-Reinforced-Concrete Column to RC Beam Joints with Internal Diaphragms under Cyclic Loading</td>
<td>779</td>
</tr>
<tr>
<td>D. Gan, Z. Zhou and X.H. Zhou</td>
<td></td>
</tr>
<tr>
<td>Cyclic Response of Steel Cladding Details with Fiber-Reinforced Polymer Shims</td>
<td>787</td>
</tr>
<tr>
<td>K. Peterman, M. Webster, J. D’Aloisio and J. Hajjar</td>
<td></td>
</tr>
<tr>
<td>Bidirectional Behaviour of Unstiffened and Stiffened Direct-Welded Connections for Square CFST Columns</td>
<td>794</td>
</tr>
<tr>
<td>H. Tjahjanto, G.A. MacRae and A. Abu</td>
<td></td>
</tr>
<tr>
<td>Experimental Study and Numerical Assessment of the Flexural Behaviour of Square and Rectangular CFST Members under Monotonic and Cyclic Loading</td>
<td>804</td>
</tr>
<tr>
<td>Y.D. Jiang, A. Silva, J.M. Castro, T.M. Chan and R. Monteiro</td>
<td></td>
</tr>
<tr>
<td>Theoretical Study on Steel Reinforced Concrete Hybrid Walls with Centered and Staggered Openings</td>
<td>812</td>
</tr>
<tr>
<td>D. Dan, S.C. Florut, V. Todea and V. Stoian</td>
<td></td>
</tr>
<tr>
<td>Influence of Composite Slab on the Nonlinear Response of Extended End-Plate Beam-to-Column Joints</td>
<td>818</td>
</tr>
<tr>
<td>R. Tartaglia, M. D'Aniello, G.A. Rassati, J.A. Swanson and R. Landolfo</td>
<td></td>
</tr>
<tr>
<td>Analytical Methodology to Predict the Beam Overstrength Considering the Composite Slab Effects</td>
<td>826</td>
</tr>
<tr>
<td>T. Chaudhari, G.A. MacRae, D. Bull, G.C. Clifton and S. Hicks</td>
<td></td>
</tr>
<tr>
<td>Ductility and Behaviour Factor of RC Frame - Perforated SPSW Dual Systems</td>
<td>835</td>
</tr>
<tr>
<td>A. Formisano, H.M. Ahmadi and F.M. Mazzolani</td>
<td></td>
</tr>
<tr>
<td>Seismic Response of Composite Eccentrically Braced Frames with Short Dissipative Element</td>
<td>846</td>
</tr>
<tr>
<td>A. Vătăman, A. Ciutina and D. Grecea</td>
<td></td>
</tr>
<tr>
<td>The Effect of Consecutive Earthquakes on a Composite Structure Utilising RBRFs</td>
<td>854</td>
</tr>
<tr>
<td>Y. Oktavianus, H. Goldsworthy, E. Gad and S. Fernando</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 8: Buckling-Restrained Braces

Low-Cycle Fatigue Performance of Buckling Restrained Braces and Assessment of Cumulative Damage under Severe Earthquakes
Y.S. Liu, K.P. Chen, G.Q. Li and F.F. Sun 867

Seismic Design of Buckling-Restrained Brace in Preventing Local Buckling Failure
P.C. Lin, T. Takeuchi, R. Matsui and B. Sitler 875

Performance Evaluation of Buckling-Restrained Braces Installed in a Mid-Rise Steel Structure
R. Narui, K. Koyano, M. Midorikawa, T. Nakagomi and M. Iwata 884

Effects of Out-of-Plane Displacements on Load Capacity of Gusset Plates in Buckling Restrained Braced Frames
S.Y. Vazquez-Colunga, C.L. Lee and G.A. MacRae 892

Buckling Restrained Brace Deformation Measuring Device
J.W. Telford, A.W. Sim, G.A. MacRae and D.M. Clucas 900

Finite Element Modelling of Buckling Restrained Braces under Combined In-Plane and Out-of-Plane Loading
J. Cui, C.L. Lee and G.A. MacRae 908

Flexural Properties of Buckling-Restrained Brace Connections
B. Sitler, T. Takeuchi and R. Matsui 916

Seismic Stability of Buckling-Restrained Braced Frames
S.R. Zaruma and L.A. Fahnestock 924

Buckling-Restrained Braces (BRB) Seismic Design - A Consulting Engineer’s Consideration
W.Y. Kam, R. Built, B. Saxey and J. Johnson 932

Verification of Clearance and Gap for Fabricating the Buckling-Restrained Brace Using Steel Mortar Planks
K. Koyano, M. Fujita and M. Iwata 941

Behavior Factor of Dual Systems with BRBs and Semi-Rigid Connections
F. Barbagallo, M. Bosco, E.M. Marino and P.P. Rossi 949

Chapter 9: Passive Control

Mechanical Behavior of Assembled Steel Dampers with Optimized Shapes

Seismic Performance of Steel MRF Structures with Nonlinear Viscous Dampers from Real-Time Hybrid Simulations
B.P. Dong, R. Sause and J.M. Ricles 967

Magnetorheological Fluid with Nano Fe$_3$O$_4$ for Performance Enhancement of MR Damper for Seismic Resistance of Steel Structures
C. Daniel, G. Hemalatha, L. Sarala, D. Tensing and S. Sundar Manoharan 975

The Use of TPMC for Designing MRFs Equipped with FREEDAM Connections: Performance Evaluation
R. Montuori, E. Nastri, V. Piluso and S. Streppone 983

Footfall Induced Vibration Response of a Base-Isolated Steel Building
R. Malhotra, C. Ndarowa, G.A. MacRae, A. Palermo and S. Broglio 992

Base Isolation Design of Steel Structures on Soft Soil
I. Corbi and O. Corbi 1002

Spectral Analysis and Experimental Validation of a Low-Damage Hybrid Dissipater
F.G. Golzar, G.W. Rodgers and J.G. Chase 1007

Chapter 10: Case Studies

Application of Buckling-Restrained Braces in the Seismic Design of a Thermal Power Plant in China
M. Aguaguíña, Y. Zhou, S.M. Gong and Z.Q. Fang 1017
Comparison between a Traditionally Retrofitted Industrial Building and an Alternative Solution Using BRBs
A. Mora and J. Nazal

The Design of an Iconic 40-Storey Steel Composite Office Tower in Indonesia with a High Seismic Performance Level
S. Wijanto, T. Andriono, I. Wibawa and W. Setiawan

The Use of TPMC for Designing MRFs Equipped with FREEDAM Connections: A Case Study
R. Montuori, E. Nastradi, V. Piluso and S. Streppone

Design Development of a Four-Story Strongback Braced Frame
B. Simpson and S. Mahin

Metal Shear Panels for Seismic Upgrading of RC Buildings: A Case Study
G. de Matteis and M. Ferraioli

Seismic Performance Assessment of Existing Steel Buildings: A Case Study
L. di Sarno, F. Paolacci and A.G. Sextos

L. Tirca, O. Serban, R. Tremblay, Y. Jiang and L. Chen

Seismic Response of Long Span Continuous Rigid-Framed Steel Arch Bridge
A.R. Liu and Y.L. Pi

Chapter 11: Assessment and Retrofitting Practice

Seismic Retrofit of a Heritage Building in Wellington Using Buckling Restrained Braces
A.S.J. Gilani, J. Bothara and H.K. Miyamoto

Seismic Retrofitting of Eccentrically Braced Frames by Rocking Walls and Viscous Dampers
F. Barbagallo, M. Bosco, A. Gherzi, E.M. Marino and P.P. Rossi

Minimal-Disturbance Arm Damper Retrofitting: Evaluation of Retrofit Effect Using Multi-Span Steel Frame Specimens
G. Marzano, L. Zhang, Y. Sasaki and M. Kurata

Innovative Suspended Superstructure for the Retrofitting of a Steel Truss Railway Bridge
M. Mezzi, G. Nestovito, P. Petrella and V. Cefaliello

Seismic Repair by Cover Plate to the Damaged RHS Column with Strength Deterioration due to the Local Buckling
S. Kishiki, S. Nakada and G.H. Lin

Chapter 12: Codes, Standards and Design Guides

Multi-Hazard Risk Mitigation through Application of Seismic Design Rules
D. Dubină, F. Dinu and I. Marginean

Remarks on Seismic Design Rules of EC8 for Inverted-V CBFs
S. Costanzo, M. D’Aniello, R. Landolfo and A. de Martino

Y.D. Wang, E. Nastradi, L. Tirca, R. Montuori and V. Piluso

Seismic Assessment of Existing Eccentrically Braced Frames According to NBCC and ASCE 41-13 Evaluation Procedures
S. Koboevic, G. Porthier de Bellefeuille and P.E. Maheu

A Design Formulation for Dissipative Metal Shear Panels
G. de Matteis and G. Brando