Effect of Hydrogen Trapping and Poisons on Diffusion Behavior of Hydrogen in Low Carbon Steel

Abstract:

Article Preview

Effect of hydrogen trapping and poisons on diffusion behavior of hydrogen in commercial cold-rolled low carbon steel was investigated by means of electrochemical hydrogen permeation techniques. The experimental results reveal that diffusion rate and diffusion flux of hydrogen in the materials gradually increase with increasing the number of hydrogen charging and outgassing, and lag time significantly shortens with them, therefore, hydrogen trapping impede diffusion behavior of hydrogen in the materials. Different poisons in the hydrogen charging solution have also resulted in a certain influence on the assessment of hydrogen diffusion behavior.

Info:

Periodical:

Edited by:

Hun Guo, Taiyong Wang, Zijing Wang, Hongfeng Wang and Ji Xu

Pages:

3-10

Citation:

L. Cai and L. M. Zhao, "Effect of Hydrogen Trapping and Poisons on Diffusion Behavior of Hydrogen in Low Carbon Steel", Key Engineering Materials, Vol. 764, pp. 3-10, 2018

Online since:

February 2018

Authors:

Export:

Price:

$38.00

* - Corresponding Author

[1] T. Depover, D.P. Escobar, E. Wallaert, Z. Zermout, K. Verbeken. Effect of hydrogen charging on the mechanical properties of advanced high strength steels. International Journal of Hydrogen Energy. 39(2014): 4647-4656.

DOI: https://doi.org/10.1016/j.ijhydene.2013.12.190

[2] S. Chan, J. Wu, C. Ho. Evaluation of three different hydrogen determination methods for steel weldments. Chinese Journal of Materials Science. 22(1990)79-88.

[3] Y.S. Choi, J.G. Kim. Stress corrosion cracking and hydrogen embrittlement cracking of welded weathering steel and carbon steel in a simulated acid rain environment. Materials Science and Technology. 19(2003)1737-1745.

DOI: https://doi.org/10.1179/026708303225008329

[4] N. Winzer, O. Rott, R. Thiessen, I. Thomas, K. Mraczek, T. Höche, L. Wright, M. Mrovec. Hydrogen diffusion and trapping in Ti-modified advanced high strength steels. Materials and Design. 92(2016)450-461.

DOI: https://doi.org/10.1016/j.matdes.2015.12.060

[5] R. Silverstein, D. Eliezer, B. Glam, S. Eliezer, D. Moreno. Evaluation of hydrogen trapping mechanisms during performance of different hydrogen fugacity in a lean duplex stainless steel. Journal of Alloys and Compounds. 648(2015)601-608.

DOI: https://doi.org/10.1016/j.jallcom.2015.07.029

[6] W.W. Wang, Y.J. Su, Y. Yan, J.X. Li, L.J. Qiao, W.Y. Chu, X.K. Wang, Y. Xing. The role of hydrogen in stress corrosion cracking of 310 austenitic stainless steel in a boiling MgCl2 solution. Corrosion Science. 60(2012) 275-279.

DOI: https://doi.org/10.1016/j.corsci.2012.03.026

[7] H. Addach, P. Berçot, M. Rezrazi, J. Takadoum. Study of the electrochemical permeation of hydrogen in iron. Corrosion Science. 51(2009) 263-267.

DOI: https://doi.org/10.1016/j.corsci.2008.10.024

[8] T. Akamatsu, Y. Kume, K. Komiya, H. Yukawa, M. Morinaga, S. Yamaguchi. Electrochemical method for measuring hydrogen permeability through metals. Journal of Alloys and Compounds. 393(2005)302-306.

DOI: https://doi.org/10.1016/j.jallcom.2004.10.007

[9] T. Zakroczymski. Electrochemical determination of hydrogen in metals. Journal of Electroanalytical Chemistry. 475(1999)82-88.

DOI: https://doi.org/10.1016/s0022-0728(99)00355-1

[10] T. Zakroczymski. Adaptation of the electrochemical permeation technique for studying entry, transport and trapping of hydrogen in metals. Electrode Processes Selection of Papers from the International Conference, September 15, 2004 - September 18, 2004, Szczyrk, Poland: 2006. Elsevier Ltd; 2006. pp.2261-2266.

DOI: https://doi.org/10.1016/j.electacta.2005.02.151

[11] P. Lang, M. Rath, E. Kozeschnik, P.E. Rivera-Diaz-del-Castillo. Modelling the influence of austenitisation temperature on hydrogen trapping in Nb containing martensitic steels. Scripta Materialia. 101(2015)60-63.

DOI: https://doi.org/10.1016/j.scriptamat.2015.01.019

[12] J.M. Chen, J.K. Wu. Hydrogen diffusion through copper-plated AISI 4140 steels. Corrosion Science. 33(1992) 657-666.

DOI: https://doi.org/10.1016/0010-938x(92)90100-h

[13] F. Galliano, E. Andrieu, C. Blanc, J.M. Cloué, D. Connétable, G. Odemer. Effect of trapping and temperature on the hydrogen embrittlement susceptibility of alloy 718. Materials Science and Engineering: A. 611(2014)370-382.

DOI: https://doi.org/10.1016/j.msea.2014.06.015

[14] Y. Takahashi, J. Sakamoto, M. Tanaka, K. Higashida, H. Noguchi. Effect of hydrogen on dislocation structures around a mixed-mode fatigue crack tip in a single-crystalline iron-silicon alloy. Scripta Materialia. 64(2011)721-724.

DOI: https://doi.org/10.1016/j.scriptamat.2010.12.032

[15] J. Yang, F. Huang, Z. Guo, Y. Rong, N. Chen. Effect of retained austenite on the hydrogen embrittlement of a medium carbon quenching and partitioning steel with refined microstructure. Materials Science and Engineering: A. 665(2016)76-85.

DOI: https://doi.org/10.1016/j.msea.2016.04.025